Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces.

  “From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC). However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI) study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking).

One of the key molecular systems involved in the functioning of the striatal circuit is the endocannabinoid system. It is a neuropeptidergic circuit involved in reward processing and works in tandem with the mesolimbic dopaminergic system. Expressed selectively in the brain, the cannabinoid receptor 1 (CNR1) is the best-studied molecule of this system.

This finding suggests a role for CNR1 in social reward processing and could have significance for clinical conditions such ASC, which are marked by a deficit in social reward processing as well as atypical responses to facial expressions of emotion.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155489/

Variations in the human cannabinoid receptor (CNR1) gene modulate striatal responses to happy faces.

Abstract

“Happy facial expressions are innate social rewards and evoke a response in the striatum, a region known for its role in reward processing in rats, primates and humans. The cannabinoid receptor 1 (CNR1) is the best-characterized molecule of the endocannabinoid system, involved in processing rewards. We hypothesized that genetic variation in human CNR1 gene would predict differences in the striatal response to happy faces. In a 3T functional magnetic resonance imaging (fMRI) scanning study on 19 Caucasian volunteers, we report that four single nucleotide polymorphisms (SNPs) in the CNR1 locus modulate differential striatal response to happy but not to disgust faces. This suggests a role for the variations of the CNR1 gene in underlying social reward responsivity. Future studies should aim to replicate this finding with a balanced design in a larger sample, but these preliminary results suggest neural responsivity to emotional and socially rewarding stimuli varies as a function of CNR1 genotype. This has implications for medical conditions involving hypo-responsivity to emotional and social stimuli, such as autism.”

http://www.ncbi.nlm.nih.gov/pubmed/16623851

[Cannabinoids in the control of pain].

Abstract

“Hemp (Cannabis sativa L.) has been used since remotes ages as a herbal remedy. Only recently the medical community highlighted the pharmacological scientific bases of its effects. The most important active principle, Delta-9-tetrahydrocannabinol, was identified in the second half of the last century, and subsequently two receptors were identified and cloned: CB1 that is primarily present in the central nervous system, and CB2 that is present on the cells of the immune system. Endogenous ligands, called endocannabinoids, were characterized. The anandamide was the first one to be discovered. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids are analgesic, and their activity is comparable to the weak opioids. Furthermore, parallels exist between opioid and cannabinoid receptors, and evidence is accumulating that the two systems sometimes may operate synergistically. The interest of the pharmaceutical companies led to the production of various drugs, whether synthetic or natural derived. The good ratio between the polyunsatured fatty acids omega-3 and omega-6 of the oil of Cannabis seeds led to reduction of the phlogosis and an improvement of the pain symptoms in patients with chronic musculo-skeletal inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/19388223

An analgesic role for cannabinoids.

Abstract

“Cannabinoids have significant analgesic properties in animal models, particularly for chronic pain states, but there are few human studies. An endogenous cannabinoid system, with specific receptors and transmitters, has recently been discovered. This discovery has led pharmacologists to explore the potential of synthetic cannabinoids to selectively target chronic pain disorders without producing the side effects associated with cannabis. Well-controlled clinical trials on cannabinoids, and cannabinoid delivery systems, are now required.”

http://www.ncbi.nlm.nih.gov/pubmed/11130354

Reassessment of the role of cannabinoids in the management of pain.

“The aim of this article is to assess the role of cannabinoids in the treatment of acute and chronic pain in humans.

 …to date there is increasing evidence that cannabinoids are safe and effective for refractory chronic pain conditions including neuropathic pain associated with multiple sclerosis, rheumatoid arthritis, and peripheral neuropathy associated with HIV/AIDS.

SUMMARY:

The precise role of cannabinoids in pain treatment still needs further evaluation. Cannabinoid compounds may be more effective in the context of chronic neuropathic pain than for the management of acute pain.”

http://www.ncbi.nlm.nih.gov/pubmed/17873600

Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials.

“Effective therapeutic options for patients living with chronic pain are limited. The pain relieving effect of cannabinoids remains unclear. A systematic review of randomized controlled trials (RCTs) examining cannabinoids in the treatment of chronic non-cancer pain was conducted according to the PRISMA statement update on the QUORUM guidelines for reporting systematic reviews that evaluate health care interventions. Cannabinoids studied included smoked cannabis, oromucosal extracts of cannabis based medicine, nabilone, dronabinol and a novel THC analogue. Chronic non-cancer pain conditions included neuropathic pain, fibromyalgia, rheumatoid arthritis, and mixed chronic pain. Overall the quality of trials was excellent. Fifteen of the eighteen trials that met the inclusion criteria demonstrated a significant analgesic effect of cannabinoid as compared with placebo and several reported significant improvements in sleep. There were no serious adverse effects. Adverse effects most commonly reported were generally well tolerated, mild to moderate in severity and led to withdrawal from the studies in only a few cases. Overall there is evidence that cannabinoids are safe and modestly effective in neuropathic pain with preliminary evidence of efficacy in fibromyalgia and rheumatoid arthritis. The context of the need for additional treatments for chronic pain is reviewed. Further large studies of longer duration examining specific cannabinoids in homogeneous populations are required.

In conclusion this systematic review of 18 recent good quality randomized trials demonstrates that cannabinoids are a modestly effective and safe treatment option for chronic non-cancer (predominantly neuropathic) pain. Given the prevalence of chronic pain, its impact on function and the paucity of effective therapeutic interventions, additional treatment options are urgently needed. More large scale trials of longer duration reporting on pain and level of function are required.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243008/

Cannabinoids for pain management.

Abstract

“Cannabinoids have been used for thousands of years to provide relief from suffering, but only recently have they been critically evaluated in clinical trials. This review provides an in-depth examination of the evidence supporting cannabinoids in various pain states, along with an overview of potential adverse effects. In summary, there is strong evidence for a moderate analgesic effect in peripheral neuropathic and central pain conditions, and conflicting evidence for their use in nociceptive pain. For spasticity, most controlled studies demonstrate significant improvement. Adverse effects are not uncommon with cannabinoids, though most are not serious and self-limiting. In view of the limited effect size and low but not inconsequential risk of serious adverse events, cannabinoids should be employed as analgesics only when safer and more effective medication trials have failed, or as part of a multimodal treatment regimen.”

http://www.ncbi.nlm.nih.gov/pubmed/21508629

Cannabinoids for the treatment of neuropathic pain: clinical evidence.

Abstract

“Neuropathic pain is a worldwide epidemic that occurs in 3 to 8% of individuals in industrialized countries and is often refractory to existing treatments. Drugs currently available to target neuropathic pain are, at best, moderately effective and include antidepressants, gabapentin, NMDA receptor antagonists, as well as other anticonvulsants, all of which are limited by their adverse-effect profiles. Cannabinoid drugs are emerging as a promising class of drugs to treat neuropathic pain and have been tested for analgesic effects in a range of chronic pain conditions. Data show that cannabinoids are often effective in individuals with refractory pain receiving concomitant analgesic drugs. Clinical studies on cannabinoids for the treatment of neuropathic pain are reviewed, focusing on clinical trials published within the last five years. Data from large, well-controlled studies show that cannabinoids are moderately effective in reducing chronic pain and that side effects are comparable to existing treatments, suggesting that cannabinoids can play a useful role in the management of chronic pain. Like other drugs for neuropathic pain, cannabinoids have a dose titration that is limited by psychoactive side effects. The development of cannabinoid drugs to target neuropathic pain with improved therapeutic ratios will depend upon the development of cannabinoid treatments with reduced psychoactivity.”

http://www.ncbi.nlm.nih.gov/pubmed/18183533

Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain.

“OBJECTIVE:

Debilitating pain, occurring in 50-70% of multiple sclerosis (MS) patients, is poorly understood and infrequently studied. We summarized efficacy and safety data of cannabinoid-based drugs for neuropathic pain.

CONCLUSION:

Cannabinoids including the cannabidiol/THC buccal spray are effective in treating neuropathic pain in MS.”

http://www.ncbi.nlm.nih.gov/pubmed/17257464

Cannabinoid mechanisms of pain suppression.

Abstract

“A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation in animals. This review examines neuroanatomical, behavioral, and neurophysiological evidence supporting a role for cannabinoids in suppressing pain at spinal, supraspinal, and peripheral levels. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry, and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing. Pharmacological and transgenic approaches that have been used to study cannabinoid antinociceptive mechanisms are described. These studies provide insight into the functional roles of cannabinoid CB1 (CB1R) and CB2 (CB2R) receptor subtypes in cannabinoid antinociceptive mechanisms, as revealed in animal models of acute and persistent pain. The role of endocannabinoids and related fatty acid amides that are implicated in endogenous mechanisms for pain suppression are discussed. Human studies evaluating therapeutic potential of cannabinoid pharmacotherapies in experimental and clinical pain syndromes are evaluated. The potential of exploiting cannabinoid antinociceptive mechanisms in novel pharmacotherapies for pain is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/16596786