“Cannabinoids, which are the active compounds of marijuana, produce some pharmacological effects similar to the opioids. In addition, there are functional interactions between the cannabinoid and opioid systems. In this study, we investigated the effects of intraperitoneal (i.p.) injection of opioid drugs on responses induced by intracentral amygdala (intra-CeA) microinjection of cannabinoid CB1 receptor agents in rats, using the elevated plus maze test of anxiety…
In conclusion, the results may indicate an anxiolytic-like effect for cannabinoid CB1 receptors of the CeA and the existence of an interaction between the cannabinoid and the opioid systems in the modulation of anxiety.”
Monthly Archives: January 2013
Activation of cannabinoid CB1 receptors in the dorsolateral periaqueductal gray induces anxiolytic effects in rats submitted to the Vogel conflict test.
“Activation of cannabinoid CB(1) receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test…
The results give further support to the proposal that facilitation of CB(1) receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses.”
The cannabinoid CB1 receptor is involved in the anxiolytic, sedative and amnesic actions of benzodiazepines.
“Previous studies in our laboratory showed that cannabinoid CB1 receptor knockout mice (CB1-/-) presented increased anxiety-like behaviours that did not respond to the anxiolytic actions of benzodiazepines. These results suggest that the pharmacological effects of benzodiazepines may involve the participation of cannabinoid CB1 receptors. Therefore, the purpose of this study was to examine the effects of alprazolam and the cannabinoid CB1 receptor antagonist…
Taken together, these findings revealed that cannabinoid CB1 receptor plays a pivotal role in the pharmacological actions of benzodiazepines. Furthermore, these results suggest that blockade of cannabinoid CB1 receptors may be useful in the treatment of patients with problems related to the consumption of benzodiazepines. Further clinical trials are needed to test this hypothesis.”
A role for cannabinoid CB1 receptors in mood and anxiety disorders.
“Mood and anxiety disorders, the most prevalent of the psychiatric disorders, cause immeasurable suffering worldwide. Despite impressive advances in pharmacological therapies, improvements in efficacy and side-effect profiles are needed. The present literature review examines the role that the endocannabinoid system may play in these disorders and the potential value of targeting this system in the search for novel and improved medications.
Cannabis and its major psychoactive component (-)-trans-delta9-tetrahydrocannabinol, have profound effects on mood and can modulate anxiety and mood states. Cannabinoid receptors and other protein targets in the central nervous system (CNS) that modulate endocannabinoid function have been described. The discovery of selective modulators of some of these sites that increase or decrease endocannabinoid neurotransmission, primarily through the most prominent of the cannabinoid receptors in the CNS, the CB1 receptors, combined with transgenic mouse technology, has enabled detailed investigations into the role of these CNS sites in the regulation of mood and anxiety states. Although data point to the involvement of the endocannabinoid system in anxiety states, the pharmacological evidence seems contradictory: both anxiolytic- and anxiogenic-like effects have been reported with both endocannabinoid neurotransmission enhancers and blockers.
Due to advances in the development of selective compounds directed at the CB1 receptors, significant progress has been made on this target. Recent biochemical and behavioural findings have demonstrated that blockade of CB1 receptors engenders antidepressant-like neurochemical changes (increases in extracellular levels of monoamines in cortical but not subcortical brain regions) and behavioural effects consistent with antidepressant/antistress activity in rodents.”
Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders.
“G-protein-coupled receptor (GPCR)-mediated signalling is the most widely used signalling mechanism in cells, and its regulation is important for various physiological functions. The cannabinoid-1 (CB(1)) receptor, a GPCR, has been shown to play a critical role in neural circuitries mediating motivation, mood and emotional behaviours.
Several recent studies have indicated that impairment of CB(1) receptor-mediated signalling may play a critical role in the pathophysiology of various neuropsychiatric disorders. In this article, the authors briefly review literature relating to the role played by the endocannabinoid system in various neuropsychiatric disorders, and the CB(1) receptor as a potential therapeutic target for the treatment of alcoholism, depression, anxiety and schizophrenia.”
CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents.
“Cannabinoids are known to modulate GABAergic and glutamatergic transmission in cortical areas, the former via CB1 and the latter via a novel receptor. Pharmacological data demonstrate that several widely used cannabinoid ligands bind to both receptors, which may explain the inconsistencies in their behavioural effects.
In the present experiments, we studied the effects of the CB1 antagonist… and the cannabinoid agonist… in wild-type as well as in CB1 knockout mice… In wild types, the cannabinoid agonist… caused a decrease in anxiety-like behaviour, which was abolished by the CB1-selective antagonist…
Our studies on the behavioural effects of the cannabinoid antagonist SR-141716A and the CB1 antagonist AM-251 show that the CB1 and the novel cannabinoid receptor mediate anxiolytic (anti-anxiety) and anxiogenic (anxiety) effects, respectively.
This suggests that agonists of the former, or antagonists of the latter, are promising new compounds in the pharmacotherapy of anxiety.”
Antagonism of cannabinoid 1 receptors reverses the anxiety-like behavior induced by central injections of corticotropin-releasing factor and cocaine withdrawal.
“The endocannabinoid (eCB) system is an important regulator of the stress response and mediates several stress-related behaviors, including anxiety. Despite anatomical evidence that eCBs interact with the principle stress peptide, corticotropin-releasing factor (CRF), few data exist that address functional interactions between these systems. Accordingly, we examined the effects of the CB1 receptor antagonist, AM251, on behavioral anxiety induced by (1) exogenous CRF, and (2) withdrawal from chronic cocaine exposure (mediated by CRF)… Our findings suggest that the anxiogenic effects of CRF and cocaine withdrawal are mediated, at least in part, by CB1 receptor transmission, and provide evidence in support of eCB-CRF interactions that are independent of the hypothalamic-pituitary-adrenal axis.”
Cat odour-induced anxiety–a study of the involvement of the endocannabinoid system.
“Recent evidence suggests the involvement of the endocannabinoid (EC) system in the regulation of anxiety.The aim of present work was to study the role of the EC system in cat odour-induced anxiety in rats… Exposure to cat odour induces anxiogenic-like effect on the behaviour in rats… Relation of predator odour-induced anxiety to the inhibition of the EC system in the amygdala and PAG is supported by behavioural studies where blockade of CB1 receptors by rimonabant induces anxiogenic-like action.”
Anti-Aversive Effects of Cannabidiol on Innate Fear-Induced Behaviors Evoked by an Ethological Model of Panic Attacks Based on a Prey vs the Wild Snake Epicrates cenchria crassus Confrontation Paradigm
“Research on the interaction between different compounds extracted from the plant Cannabis sativa (Cannabis) and the endocannabinoid system has revealed a series of ligands that selectively bind to cannabinoid receptors. The activation of this system causes a wide spectrum of responses, some of which could be potentially therapeutic. Recently, much attention has been given to cannabidiol (CBD), a major constituent of Cannabis that is unable to mimic all of the effects of the plant but has a wide range of pharmacological effects. In the elevated plus-maze, this drug produces an anxiolytic-like effect…
… attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm…
These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli…
In summary, the data presented in this study suggest that the complex action of CBD on the endocannabinoid-mediated system, together with its putative effect on the serotonin-mediated system, could have a pivotal role in the regulation of emotional states and thus constitute a novel pharmacological target for anti-panic therapy.”
The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors.
“Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects.
CONCLUSIONS:
These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.”