Monthly Archives: January 2013
CB(2) receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients.
“The cannabinoid system seems to play an important role in various neurodegenerative diseases including Alzheimer’s disease (AD). The relationship of cannabinoid receptors (CB(1)R and CB(2)R) to cognitive function and neuropathological markers in AD remains unclear. In the present study, postmortem cortical brain tissues (Brodmann area 10) from a cohort of neuropathologically confirmed AD patients and age-matched controls were used to measure CB(1)R and CB(2)R by immunoblotting. Correlational analyses were performed for the neurochemical and cognitive data. CB(1)R expression was significantly decreased in AD. Levels of CB(1)R correlated with hypophagia, but not with any AD molecular marker or cognitive status (Mini Mental State Examination score). The level of CB(2)R was significantly higher (40%) in AD. Increases in the expression of the glial marker glial fibrillar acidic protein were also found. CB(2)R expression did not correlate with cognitive status. Interestingly, expression levels of CB(2)R correlated with two relevant AD molecular markers, Aβ(42) levels and senile plaque score.
These results may constitute the basis of CB(2)R-based therapies and/or diagnostic approaches.”
The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration
“THE CANNABINOID CB2 RECEPTOR AS A BIORATIONAL TARGET FOR THE TREATMENT OF NEURODEGENERATION. The presence of CB2 receptors in microglia in the human Alzheimer’s diseased brain suggests that CB2 may provide a novel target for a range of neuropathologies.
The first approved cannabinoid drugs were analogues of Δ9-tetrahydrocannabinol (Δ9-THC). Dronabinol is a natural isomer of THC that is found in the cannabis plant, and Marinol™ contains synthetic dronabinol. Marinol, and another analogue nabilone (Cesamet™ ) are used to prevent nausea and vomiting after treatment with anti-cancer medicines. More recently, GW-100 (Sativex™) which combines nearly equal amounts of Δ9-THC and cannabidiol in a whole plant extract from cultivated cannabis, has been approved in Canada…
We conclude that the administration of CB2 agonists and antagonists may differentially alter microglia-dependent neuroinflammation. CB2 specific compounds have considerable therapeutic appeal over CB1 compounds, as the exclusive expression of CB2 on immune cells within the brain provides a highly specialised target, without the psychoactivity that plagues CB1 directed therapies.
In addition, CB2 activation appears to prevent or decrease microglial activation.
In a rodent model of Alzheimer’s disease microglial activation was completely prevented by administration of a selective CB2 agonist.”
Role of CB2 receptors in neuroprotective effects of cannabinoids.
“CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons.
Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated. These disorders include Alzheimer’s disease, Huntington’s chorea, amyotrophic lateral sclerosis and others. Interestingly, in experimental models of these disorders, the activation of CB2 receptors has been related to a delayed progression of neurodegenerative events, in particular, those related to the toxic influence of microglial cells on neuronal homeostasis.
The present article will review the evidence supporting that CB2 receptors might represent a key element in the endogenous response against different types of cytotoxic events, and that this receptor type may be a clinically promising target for the control of brain damage in neurodegenerative disorders.”
Cannabinoid CB2 receptors in human brain inflammation.
“CB2 receptors in neuroinflammatory conditions of the human brain.
“CB2 receptors have been found to be present in the CNS, thus offering new opportunities for the pharmacological use of cannabinoid agents. Furthermore, the fact that their expression is increased by inflammatory stimuli suggests that they may be involved in the pathogenesis and/or in the endogenous response to injury. Data obtained in vitro and in animal models show that CB2 receptors may be part of the general neuroprotective action of the ECS…
The anti-inflammatory effects triggered by the activation of the CB2 receptor make it an attractive target for the development of novel anti-inflammatory therapies.”
Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation
“Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer’s disease (AD), multiple sclerosis (MS), and HIV dementia. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2).
Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.”
Does Smoking Marijuana Prevent Alzheimer’s Disease?
“Maintaining Memories with Marijuana. Research in my laboratory has demonstrated that stimulating the brain’s marijuana receptors may offer protection by reducing brain inflammation and by restoring neurogenesis. Thus, later in life, marijuana might actually help your brain, rather than harm it.
It takes very little marijuana to produce benefits in the older brain; my colleague in France, Dr. Yannick Marchalant, coined the motto “a puff is enough” because it appears as though only a single puff each day is necessary to produce significant benefit.
The challenge for pharmacologists in the future will be to isolate the beneficial effects of the marijuana plant from its psychoactive effects.”
http://www.theweedblog.com/does-smoking-marijuana-prevent-alzheimers-disease/
Pot joins the fight against Alzheimer’s, memory loss
“The researchers ducked the obvious question of whether it might be simpler, faster and cheaper to simply light up a joint. “Could people smoke marijuana to prevent Alzheimer’s disease if the disease is in their family?” Wenk said in a statement. “We’re not saying that, but it might actually work.””
http://www.scientificamerican.com/blog/post.cfm?id=pot-joins-the-fight-against-alzheim-2008-11-19
Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression.
“Pharmacological inhibition of beta-amyloid (Aβ) induced reactive gliosis may represent a novel rationale to develop drugs able to blunt neuronal damage and slow the course of Alzheimer’s disease (AD). Cannabidiol (CBD), the main non-psychotropic natural cannabinoid, exerts in vitro a combination of neuroprotective effects in different models of Aβ neurotoxicity. The present study, performed in a mouse model of AD-related neuroinflammation, was aimed at confirming in vivo the previously reported antiinflammatory properties of CBD.
Cannabidiol (CBD), the main non-psychotropic component of the glandular hairs of Cannabis sativa, exhibits a plethora of actions including anti-convulsive, sedative, hypnotic, anti-psychotic, anti-nausea, anti-inflammatory and anti-hyperalgesic properties. CBD has been proved to exert in vitro a combination of neuroprotective effects in Aβ-induced neurotoxicity, including anti-oxidant and anti-apoptotic effects, tau protein hyperphosphorylation inhibition through the Wnt pathway, and marked decrease of inducible nitric oxide synthase (iNOS) protein expression and nitrite production in Aβ-challenged differentiated rat neuronal cells.
In spite of the large amount of data describing the significant neuroprotective and anti-inflammatory properties of CBD in vitro, to date no evidence has been provided showing similar effects in vivo. To achieve this, the present study investigated the potential anti-inflammatory effect of CBD in a mouse model of AD-related neuroinflammation induced by the intrahippocampal injection of the human Aβ (1–42) fragment.
The results of the present study confirm in vivo anti-inflammatory actions of CBD, emphasizing the importance of this compound as a novel promising pharmacological tool capable of attenuating Aβ evoked neuroinflammatory responses.
…on the basis of the present results, CBD, a drug well tolerated in humans, may be regarded as an attractive medical alternative for the treatment of AD, because of its lack of psychoactive and cognitive effects.”
Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189818/
Marijuana compound beats Alzheimer’s drugs in study
“THC, the key compound in marijuana, blocks the formation of brain-clogging plaques better than current Alzheimer’s drugs do. Medications like Aricept and Cognex work in much the same way as THC–by inhibiting the enzyme acetylcholinesterase–Researchers… point out that the compound THC… would likely be the key to developing new Alzheimer’s medications.”