Marijuana linked to preventing and treating Alzheimer’s disease

“Alzheimer’s disease is the leading cause of dementia among the elderly, and with the ever-increasing size of this population, cases of Alzheimer’s disease are expected to triple over the next 50 years. Consequently, the development of treatments that slow or halt the disease progression have become imperative to both improve the quality of life for patients as well as reduce the health care costs attributable to Alzheimer’s disease.

Here, we demonstrate that the active component of marijuana, Δ9-tetrahydrocannabinol (THC), competitively inhibits the enzyme acetylcholinesterase (AChE) as well as prevents AChE-induced amyloid β-peptide (Aβ) aggregation, the key pathological marker of Alzheimer’s disease. Computational modeling of the THC-AChE interaction revealed that THC binds in the peripheral anionic site of AChE, the critical region involved in amyloidgenesis.

Compared to currently approved drugs prescribed for the treatment of Alzheimer’s disease, THC is a considerably superior inhibitor of Aβaggregation, and this study provides a previously unrecognized molecular mechanism through which cannabinoid molecules may directly impact the progression of this debilitating disease.”

http://www.agoracosmopolitan.com/news/health/2011/11/26/1936.html

A molecular link between the active component of marijuana and Alzheimer’s disease pathology.

“A link between the endocannabinoid system and Alzheimer’s disease has been discovered which has provided a new therapeutic target for the treatment of patients suffering from Alzheimer’s disease. These studies have demonstrated the ability of cannabinoids to provide neuroprotection against β-amyloid peptide (Aβ) toxicity.

Here, we demonstrate that the active component of marijuana, Δ9-tetrahydrocannabinol (THC), competitively inhibits the enzyme acetylcholinesterase (AChE) as well as prevents AChE-induced amyloid β-peptide (Aβ) aggregation, the key pathological marker of Alzheimer’s disease. 

 Compared to currently approved drugs prescribed for the treatment of Alzheimer’s disease, THC is a considerably superior inhibitor of Aβ aggregation, and this study provides a previously unrecognized molecular mechanism through which cannabinoid molecules may directly impact the progression of this debilitating disease.

Since the characterization of the Cannabis sativa-produced cannabinoid, Δ9-tetrahydrocannabinol (THC), in the 1960’s,1 this natural product has been widely explored as an anti-emetic, anti-convulsive, anti-inflammatory, and analgesic.”

Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562334/

 

The endocannabinoid system in targeting inflammatory neurodegenerative diseases.

“The classical divide between degenerative and inflammatory disorders of the CNS is vanishing as accumulating evidence shows that inflammatory processes are important in the pathophysiology of primarily degenerative disorders, and neurodegeneration complicates primarily inflammatory diseases of the brain and spinal cord. Here, we review the contribution of degenerative and inflammatory processes to CNS disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis and HIV-associated dementia.

An early combination of neuroprotective and anti-inflammatory approaches to these disorders seems particularly desirable because isolated treatment of one pathological process might worsen another.

We also discuss the apparently unique opportunity to modify neurodegeneration and neuroinflammation simultaneously by pharmacological manipulation of the endocannabinoid system in the CNS and in peripheral immune cells. Current knowledge of this system and its involvement in the above CNS disorders are also reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/17350694

Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration.

“The endocannabinoid system, including endogenous ligands (‘endocannabinoids’ ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors.

Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis.

In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/19356123

The role of phytochemicals in the treatment and prevention of dementia.

Drugs & Aging

“Dementia pathologies such as Alzheimer’s disease (AD) are reaching epidemic proportions, yet they are not successfully managed by effective symptomatic treatments. Only five drugs have been developed to alleviate cognitive symptoms, and more effective and safe treatments are needed for both the cognitive symptoms and behavioural and psychological symptoms of dementia (BPSD). As two of these licensed drugs (cholinesterase inhibitors [ChEIs]) are naturally derived (galantamine and rivastigmine), the potential for plants to yield new therapeutic agents has stimulated extensive research to discover new ChEIs together with plant extracts, phytochemicals and their derivatives with other mechanistic effects relevant to dementia treatment. This review presents the potential and actual therapeutic strategies for dementia in relation to the known mechanisms of dementia pathology. Phytochemicals that have shown mechanistic effects relevant to the pathological targets in dementia are discussed, with an emphasis on those showing positive clinical trial evidence. Those phytochemicals discussed include the alkaloid physostigmine, a ChEI from the calabar bean (Physostigma venenosum), which has been used as a template for the development of synthetic derivatives that inhibit acetylcholinesterase, including the drug rivastigmine. Also discussed are other ChEI alkaloids including huperzine A, from Huperzia serrata, and galantamine, originally from the snowdrop (Galanthus woronowii); both alkaloids improve cognitive functions in AD patients.

Other phytochemicals discussed include cannabinoids (e.g. cannabidiol) from Cannabis sativa, which are emerging as potential therapeutic agents for BPSD, and resveratrol (occurs in various plants) and curcumin (from turmeric [Curcuma longa]), which have been investigated for their pharmacological activities relevant to dementia and their potential effects on delaying dementia progression. The review also discusses plant extracts, and their known constituents, that have shown relevant mechanistic effects for dementia and promising clinical data, but require more evidence for their clinical efficacy and safety. Such plants include Ginkgo biloba, which has been extensively studied in numerous clinical trials, with most outcomes showing positive effects on cognitive functions in dementia patients; however, more reliable and consistent clinical data are needed to confirm efficacy. Other plants and their extracts that have produced promising clinical data in dementia patients, with respect to cognition, include saffron (Crocus sativus), ginseng (Panax species), sage (Salvia species) and lemon balm (Melissa officinalis), although more extensive and reliable clinical data are required. Other plants that are used in traditional practices of medicine have been suggested to improve cognitive functions (e.g. Polygala tenuifolia) or have been associated with alleviation of BPSD (e.g. the traditional prescription yokukansan); such remedies are often prescribed as complex mixtures of different plants, which complicates interpretation of pharmacological and clinical data and introduces additional challenges for quality control. Evidence for the role of natural products in disease prevention, the primary but considerably challenging aim with respect to dementia, is limited, but the available epidemiological and clinical evidence is discussed, with most studies focused on ChEIs, nicotine (from Nicotiana species), curcumin, wine polyphenols such as resveratrol and G. biloba. Challenges for the development of phytochemicals as drugs and for quality control of standardized plant extracts are also considered.”

http://www.ncbi.nlm.nih.gov/pubmed/21639405

https://link.springer.com/article/10.2165%2F11591310-000000000-00000

Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders.

“In traditional practices of medicine, numerous plants have been used to treat cognitive disorders, including neurodegenerative diseases such as Alzheimer’s disease (AD) and other memory related disorders. An ethnopharmacological approach has provided leads to identifying potential new drugs from plant sources, including those for memory disorders. There are numerous drugs available in Western medicine that have been directly isolated from plants, or are derived from templates of compounds from plant sources. For example, some alkaloids from plant sources have been investigated for their potential in AD therapy, and are now in clinical use (e.g. galantamine from Galanthus nivalis L. is used in the United Kingdom).

 Various other plant species have shown favourable effects in AD, or pharmacological activities indicating the potential for use in AD therapy.

This article reviews some of the plants and their active constituents that have been used in traditional medicine, including Ayurvedic, Chinese, European and Japanese medicine, for their reputed cognitive-enhancing and antidementia effects. Plants and their constituents with pharmacological activities that may be relevant to the treatment of cognitive disorders, including enhancement of cholinergic function in the central nervous system, anti-cholinesterase (anti-ChE), antiinflammatory, antioxidant and oestrogenic effects, are discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/12557240

Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy.

“The use of complementary medicines, such as plant extracts, in dementia therapy varies according to the different cultural traditions. In orthodox Western medicine, contrasting with that in China and the Far East for example, pharmacological properties of traditional cognitive- or memory-enhancing plants have not been widely investigated in the context of current models of Alzheimer’s disease. An exception is Gingko biloba in which the gingkolides have antioxidant, neuroprotective and cholinergic activities relevant to Alzheimer’s disease mechanisms. The therapeutic efficacy of Ginkgo extracts in Alzheimer’s disease in placebo controlled clinical trials is reportedly similar to currently prescribed drugs such as tacrine or donepezil and, importantly, undesirable side effects of Gingko are minimal. Old European reference books, such as those on medicinal herbs, document a variety of other plants such as Salvia officinalis (sage) and Melissa officinalis (balm) with memory-improving properties, and cholinergic activities have recently been identified in extracts of these plants. Precedents for modern discovery of clinically relevant pharmacological activity in plants with long-established medicinal use include, for example, the interaction of alkaloid opioids in Papaver somniferum (opium poppy) with endogenous opiate receptors in the brain. With recent major advances in understanding the neurobiology of Alzheimer’s disease, and as yet limited efficacy of so-called rationally designed therapies, it may be timely to re-explore historical archives for new directions in drug development. This article considers not only the value of an integrative traditional and modern scientific approach to developing new treatments for dementia, but also in the understanding of disease mechanisms. Long before the current biologically-based hypothesis of cholinergic derangement in Alzheimer’ s disease emerged, plants now known to contain cholinergic antagonists were recorded for their amnesia- and dementia-inducing properties.”

http://www.ncbi.nlm.nih.gov/pubmed/10411211

Cannabis May Offer Alzheimer’s Hope, Study Says

“Marijuana compounds offer an alternative approach for treating the neurodegeneration associated with Alzheimer’s disease (AD)…

Investigators at the Trinity College, Institute for Neuroscience, in Dublin report that cannabinoids have been shown to protect neurons from the deleterious effects of amyloid plaque – the primary pathological hallmark of Alzheimer’s. Cannabinoids also demonstrate a propensity to reduce oxidative stress and inflammation, while also promoting neurogenesis (the birth of new neuronal cells), authors report.

Authors write: “In recent years the proclivity of cannabinoids to exert a neuroprotective influence has received substantial interest as a means to mitigate the symptoms of neurodegenerative conditions. … [C]annabinoids offer a multi-faceted approach for the treatment of Alzheimer’s disease by providing neuroprotection and reducing neuroinflammation, whilst simultaneously supporting the brain’s intrinsic repair mechanisms by augmenting neurotrophin expression and enhancing neurogenesis. … Manipulation of the cannabinoid pathway offers a pharmacological approach for the treatment of AD that may be efficacious than current treatment regimens.”

Preclinical studies have demonstrated that cannabinoids can delay disease progression in animal models of several neurodegenerative diseases, including multiple sclerosis and amyotrophic lateral sclerosis (Lou Gehrig’s disease).”-

Paul Armentano, NORML  http://norml.org/news/2007/09/20/cannabis-may-offer-alzheimers-hope-study-says

Full text of the study, “Alzheimer’s disease; taking the edge off with cannabinoids?” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190031/

Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease.

“Microglial activation is an invariant feature of Alzheimer’s disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo… the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms…

Cannabinoids, whether plant-derived, synthetic, or endocannabinoids, exert their functions through activation of cannabinoid receptors, two of which have been well characterized to date: CB1 and CB2. Cannabinoids are neuroprotective against excitotoxicity and acute brain damage, both in vitro and in vivo. Several mechanisms account for the neuroprotection afforded by this type of drug such as blockade of excitotoxicity, reduction of calcium influx, antioxidant properties of the compounds, or enhanced trophic factor support. A decrease in proinflammatory mediators brought about by cannabinoids may be also involved in their neuroprotection… Cannabidiol (CBD), the major plant-derived nonpsychotropic constituent of marijuana, is of potential therapeutic interest in different disease conditions (e.g., inflammation)…

…this kind of drug with neuroprotective and anti-inflammatory effects may be of interest in the prevention of AD inflammation, in particular CB2-selective agonists, which are devoid of psychoactive effects…

Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo…

CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD.

Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102548/