Distribution patterns of cannabinoid CB1 receptors in the hippocampus of APPswe/PS1ΔE9 double transgenic mice.

Abstract

“Cannabinoids have neuroprotective effects that are exerted primarily through cannabinoid CB1 receptors in the brain. This study characterized CB1 receptor distribution in the double transgenic (dtg) APP(swe)/PS1(ΔE9) mouse model for Alzheimer’s disease. Immunohistochemical labeling of CB1 protein in non-transgenic mice revealed that CB1 was highly expressed in the hippocampus, with the greatest density of CB1 protein observed in the combined hippocampal subregions CA2 and CA3 (CA2/3). CB1 immunoreactivity in the CA1 and CA2/3 hippocampal regions was significantly decreased in the dtg APP(swe)/PS1(ΔE9) mice compared to non-transgenic littermates. Reduced CB1 expression in dtg APP(swe)/PS1(ΔE9) mice was associated with astroglial proliferation and elevated expression of the cytokines inducible nitric oxide synthase and tumor necrosis factor alpha. This finding suggests an anti-inflammatory effect of cannabinoids that is mediated by CB1 receptor, particularly in the CA2/3 region of the hippocampus. Furthermore, the study suggests a decreased CB1 receptor expression may result in diminished anti-inflammatory processes, exacerbating the neuropathology associated with Alzheimer’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21192920

Functional autoradiography shows unaltered cannabinoid CB1 receptor signalling in hippocampus and cortex of APP/PS1 transgenic mice.

Abstract

“The cannabinoid CB1-receptor is among the most abundant G-protein-coupled receptors in the mammalian brain. Whereas post-mortem studies in Alzheimer´s disease (AD) brains compared to age-matched controls have reported decreased CB1-receptor binding but no change in their protein levels (immunoreactivity), decreased or increased CB1-receptor protein levels have been reported in APP/PS1 transgenic mice modelling AD. To complete the picture, the present study used functional autoradiography to assess CB1-receptor-dependent Gi protein activation in the hippocampus, entorhinal cortex and medial frontal cortex of 13- to14-month-old female APPswe/PS1dE9 transgenic and wild-type littermate control mice. The mouse brains were processed for [35S]GTPγS autoradiography so that brain sections were analysed in pairs of one transgenic and one control mouse brain. The autoradiography protocol was completed for each pair both in the absence and presence of dithiotreitol (DTT) to reveal possible redox-dependent alterations in CB1 receptor function. Five treatments were used: baseline, incubation with 10 μM GTPγS to assess non-specific binding, and CB1 receptor agonist CP55,940 in three concentrations. By and large we found no statistically significant differences between the APP/PS1 transgenic and control mice in CB1 receptor signalling. The only exception was a modest redox-dependent alteration in entorhinal cortical CB1 receptors between the genotypes. Thus, in accordance with the majority of earlier human AD findings, we did not find evidence for notable changes in the number of functional CB1 receptors in the common APPswe/PS1dE9 mouse model of AD.”

http://www.ncbi.nlm.nih.gov/pubmed/23244427

Nonpsychoactive Cannabidiol Prevents Prion Accumulation and Protects Neurons against Prion Toxicity

“Creutzfeldt–Jakob disease (CJD) in humans belongs to a group of fatal neurodegenerative disorders called transmissible spongiform encephalopathies (TSEs) or prion diseases. No therapeutic treatments against TSEs are currently available. The urgent need to find effective anti-prion therapies has been strengthened by the emergence of variant CJD (vCJD) caused by contaminated beef consumption …

Our results suggest that CBD may protect neurons against the multiple molecular and cellular factors involved in the different steps of the neurodegenerative process, which takes place during prion infection. When combined with its ability to target the brain and its lack of toxic side effects, CBD may represent a promising new anti-prion drug.

Overall, CBD is a promising therapeutic drug against the TSEs because it combines several crucial characteristics. It has a low toxicity and lack of psychotropic side effects as well as in vivo neuroprotective, anti-inflammatory, and anti-PrPres properties. Because CBD easily crosses the BBB, it also has the potential to be effective after prion infection has reached the CNS. Finally, prolonged treatments with CBD do not induce tolerance, a phenomenon frequently observed with THC. Additional investigations should be performed to define the optimal dose, route, frequency, and duration of the in vivo CBD treatment necessary to prevent TSE infection…”

http://www.jneurosci.org/content/27/36/9537.full

Metals Linked To Alzheimer’s And Other Neurodegenerative Diseases

“A multi-institutional team of researchers led by Emory University has defined for the first time how metal ions bind to amyloid fibrils in the brain in a way that appears toxic to neurons. Amyloid fibrils are linked to the development of neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob.”

Read more: http://www.sciencedaily.com/releases/2007/08/070813185007.htm

The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells.

“Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. A massive accumulation of beta-amyloid (Abeta) peptide aggregates has been proposed as pivotal event in AD. Abeta-induced toxicity is accompanied by a variegated combination of events including oxidative stress… Cannabidiol, a non-psychoactive marijuana component, has been recently proposed as an antioxidant neuroprotective agent in neurodegenerative diseases. Moreover, it has been shown to rescue PC12 cells from toxicity induced by Abeta peptide. Here, we report that cannabidiol inhibits hyperphosphorylation of tau protein in Abeta-stimulated PC12 neuronal cells, which is one of the most representative hallmarks in AD… These results provide new molecular insight regarding the neuroprotective effect of cannabidiol and suggest its possible role in the pharmacological management of AD, especially in view of its low toxicity in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/16389547

 

Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement.

“In view of the pro-inflammatory scenario observed in Alzheimer’s disease, in the recent years anti-inflammatory drugs have been proposed as potential therapeutic agents. We have previously shown that cannabidiol, the main non-psychotropic component from Cannabis sativa, possess a variegate combination of anti-oxidant and anti-apoptotic effects that protect PC12 cells from Abeta toxicity. In parallel, cannabidiol has been described to have anti-inflammatory properties in acute models of inflammation …

The here reported data increases our knowledge about the possible neuroprotective mechanism of cannabidiol, highlighting the importance of this compound to inhibit beta-amyloid induced neurodegeneration, in view of its low toxicity in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/16490313

Effects of cannabinoids on the immune system and central nervous system: therapeutic implications.

“Cannabinoids possess immunomodulatory activity, are neuroprotective in vivo and in vitro and can modify the production of inflammatory mediators… Cannabinoid-induced immunosuppression may have implications for the treatment of neurological disorders that are associated with excess immunological activity, such as multiple sclerosis and Alzheimer’s disease. There is anecdotal evidence that cannabis use improves the symptoms of multiple sclerosis, and studies with animal models are beginning to provide evidence for the mechanism of such effects. The development of nonpsychotropic cannabinoid analogues and modulators of the metabolism of endogenous cannabinoid ligands may lead to novel approaches to the treatment of neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18031185

Prevention of Alzheimer’s Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation

“Cannabinoids are neuroprotective agents against excitotoxicity in vitro and acute brain damage in vivo. This background prompted us to study the localization, expression, and function of cannabinoid receptors in AD and the possible protective role of cannabinoids after betaA treatment, both in vivo and in vitro. Here, we show that senile plaques in AD patients express cannabinoid receptors CB1 and CB2……

…Our results indicate that cannabinoid receptors are important in the pathology of AD and that cannabinoids succeed in preventing the neurodegenerative process occurring in the disease.”

Free full text: http://www.jneurosci.org/content/25/8/1904.long

Microglial interaction with beta-amyloid: implications for the pathogenesis of Alzheimer’s disease.

Abstract

“The etiology of Alzheimer’s disease (AD) involves a significant inflammatory component as evidenced by the presence of elevated levels of a diverse range of proinflammatory molecules in the AD brain. These inflammatory molecules are produced principally by activated microglia, which are found to be clustered within and adjacent to the senile plaque. Moreover, long-term treatment of patients with non-steroidal anti-inflammatory drugs has been shown to reduce risk and incidence of AD and delay disease progression. The microglia respond to beta-amyloid (Abeta) deposition in the brain through the interaction of fibrillar forms of amyloid with cell surface receptors, leading to the activation of intracellular signal transduction cascades. The activation of multiple independent signaling pathways ultimately leads to the induction of proinflammatory gene expression and production of reactive oxygen and nitrogen species. These microglial inflammatory products act in concert to produce neuronal toxicity and death. Therapeutic approaches focused on inhibition of the microglial-mediated local inflammatory response in the AD brain offer new opportunities to intervene in the disease.”

http://www.ncbi.nlm.nih.gov/pubmed/11455613

In search of a treatment for Alzheimer’s disease and potential immunonosuppresive therapeutic interventions.

Abstract

“Alzheimer’s disease (AD) is a serious neurodegenerative disease of aging. Recent projections of the dramatic increase in AD incidence worldwide by 2050 reveal its magnitude as a world-wide health crisis and underscore the urgent need to understand the etiology of AD in order to develop therapeutic interventions. A popular debate among scientists has traditionally pitted those in support of Beta amyloid protein as a causative factor (“Baptists”) against others who implicate tau hyperphosphorylation (“Tauists”). Considering the significance of Beta amyloid protein and hyperphosphorlyated tau protein aggregates in AD pathology, this article delves into the nature of inflammation associated with these aggregates. Aspects of inflammation focus on microglia, resident immune cells of the CNS that are activated during AD inflammation and are known to play a significant role in pathogenesis. This article discusses the role of microglia, inflammation, and the immune response as a middle ground in the debate between the “Tauists” and the “Baptists” respective positions. It explores recent advances in immunotherapy and supports continued research in and use of immunosuppressive regimens as potential therapeutic interventions for AD.”

http://www.ncbi.nlm.nih.gov/pubmed/18766151