AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking.

“Multiple studies suggest a pivotal role of the endocannabinoid system in the regulation of the reinforcing effects of various substances of abuse. Different approaches have been used to modulate endocannabinoid neurotransmission including the use of endogenous cannabinoid anandamide reuptake inhibitors.

 Previously, the effects of one of them, N-(4-hydroxyphenyl)-arachidonamide (AM404), have been explored in rodents trained to self-administer ethanol and heroin, producing some promising results. Moreover, AM404 attenuated the development and reinstatement of nicotine-induced conditioned place preference (CPP). In this study, we used the nicotine intravenous self-administration procedure to assess the effects of intraperitoneal administration of 0, 1, 3 and 10 mg/kg AM404 on nicotine-taking and food-taking behaviors under fixed-ratio and progressive-ratio schedules of reinforcement, as well as on reinstatement of nicotine-seeking induced by nicotine priming and by presentation of nicotine-associated cues. The ability of AM404 to produce place preference was also evaluated. AM404 did not produce CPP and did not modify nicotine-taking and food-taking behaviors. In contrast, AM404 dose-dependently attenuated reinstatement of nicotine-seeking behavior induced by both nicotine-associated cues and nicotine priming.

Our results indicate that AM404 could be a potential promising therapeutic option for the prevention of relapse to nicotine-seeking in abstinent smokers.”

http://www.ncbi.nlm.nih.gov/pubmed/23427192

Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

“Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory.

Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescence rats were exposed to chronic restraint stress for two weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum (vSub)-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested.

 Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23426383

The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig.

“(-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo.

 Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction.

 In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23428645

[Marihuana and cannabinoids as medicaments].

“Biological activity of cannabinoids is caused by binding to two cannabinoid receptors CB1 and CB2. Psychoactive is not only tetrahydrocannabinol (THC) but also: cannabidiol, cannabigerol or cannabichromen. Formerly, the usefulness of hemp was assessed in the relation to temporary appeasement of the symptoms of some ailments as nausea or vomiting.

 Present discoveries indicates that cannabis-based drugs has shown ability to alleviate of autoimmunological disorders such as: Multiple sclerosis (MS), Rheumatoid arthritis (RA) or inflammatory bowel disease. Another studies indicates that cannabinoids play role in treatment of neurological disorders like Alzheimer disease or Amyotrophic lateral sclerosis (ALS) or even can reduce spreading of tumor cells.

 Cannabinoids stand out high safety profile considering acute toxicity, it is low possibility of deadly overdosing and side-effects are comprise in range of tolerated side-effects of other medications.

In some countries marinol and nabilone are used as anti vomiting and nausea drug. First cannabis-based drug containg naturally occurring cannabinoids is Sativex. Sativex is delivered in an mucosal spray for patients suffering from spasticity in MS, pain relevant with cancer and neuropathic pain of various origin. Despite the relatively low acute toxicity of cannabinoids they should be avoid in patients with psychotic disorders, pregnant or breastfeeding woman. Cannabinoids prolong a time of reaction and decrease power of concentration that’s why driving any vehicles is forbidden.

 Cannabis side-effects varies and depend from several factors like administrated dose, rout of administration and present state of mind. After sudden break from long-lasting use, withdrawal symptoms can appear, although they entirely disappear after a week or two.”

http://www.ncbi.nlm.nih.gov/pubmed/23421098

[Cannabinoids for symptomatic therapy of multiple sclerosis].

“Spasticity represents a common troublesome symptom in patients with multiple sclerosis (MS). Treatment of spasticity remains difficult, which has prompted some patients to self-medicate with and perceive benefits from cannabis. Advances in the understanding of cannabinoid biology support these anecdotal observations.

Various clinical reports as well as randomized, double-blind, placebo-controlled studies have now demonstrated clinical efficacy of cannabinoids for the treatment of spasticity in MS patients. Sativex is a 1:1 mix of delta-9-tetrahydocannabinol and cannabidiol extracted from cloned Cannabis sativa chemovars, which recently received a label for treating MS-related spasticity in Germany.

The present article reviews the current understanding of cannabinoid biology and the value of cannabinoids as a symptomatic treatment option in MS.”

http://www.ncbi.nlm.nih.gov/pubmed/22080198

Symptomatic therapy in multiple sclerosis: the role of cannabinoids in treating spasticity

“Anecdotal evidence suggests a beneficial effect of cannabis on spasticity as well as pain. Recently, randomized, double-blind, placebo-controlled studies have confirmed the clinical efficacy of cannabinoids for the treatment of spasticity in patients with MS. Based on these data, nabiximols (Sativex), a 1:1 mix of Δ-9-tetrahydrocannabinol and cannabidiol extracted from cloned Cannabis sativa chemovars, received approval for treating MS-related spasticity in various countries around the globe. In this article we review the current understanding of cannabinoid biology and the value of cannabinoids as a symptomatic treatment option addressing spasticity in patients with MS.

Based on individual case reports, the consumption of plant parts, specifically, the resin of the Cannabis sativa hemp plant, has, for years, been attributed to the capacity to reduce the symptoms of multiple sclerosis (MS), such as spasticity, neuropathic pain, tremor, and disturbed bladder function. As characterization of the endocannabinoid system and its role in the motor system and pain processing continue to advance, there is increasing evidence of a scientific basis for the postulated therapeutic effect of cannabis derivatives.

The oromucosal administration of THC and CBD in a 1:1 ratio has proven to be a well tolerated therapeutic option for treating spasticity in patients with MS who respond poorly to conventional antispastic drugs. Assessment of the efficacy is limited by the fact that spasticity as a symptom is very difficult to measure reliably, objectively, and validly. Current study data support the position that the beneficial effects of nabiximols on subjective and objective endpoints in a selected patient sample outweigh the adverse pharmaceutical effects. The effects of long-term nabiximols treatment on neuropsychological processes and the structure of the endocannabinoid system need to be further characterized.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437528/

[Cannabinoids in multiple sclerosis — therapeutically reasonable?].

“For centuries extracts from the Cannabis sativa plant have been used for recreational use and as remedies. Anecdotal reports from patients with multiple sclerosis (MS) experiencing relief of their spasticity and pain after smoking marihuana have prompted discussions about a potential therapeutic application of cannabis preparations in MS.

Only recently the first large, multicenter, double-blind, placebo controlled study was conducted evaluating the use of cannabinoids for treatment of spasticity and other symptoms related to MS.

 Based on this trial and previous uncontrolled observations together with insights from basic research and animal experiments there is reasonable evidence for the therapeutical employment of cannabinoids in the treatment of MS related symptoms.

 Furthermore, data are arising that cannabinoids have immunomodulatory and neuroprotective properties. However, results from clinical trials do not allow the recommendation for the general use of cannabinoids in MS.

This article summarizes the present knowledge of clinical and experimental research regarding the therapeutic potential of cannabinoids for the treatment of MS”

http://www.ncbi.nlm.nih.gov/pubmed/16052440

Sativex® in multiple sclerosis spasticity: a cost-effectiveness model.

“Multiple sclerosis (MS) is a chronic, progressive disease that carries a high socioeconomic burden. Spasticity (rigidity and spasms) is common in MS and a key contributor to MS-related disability.

This study evaluated the cost-effectiveness of Sativex®, a 9-d-tetrahydrocannabinol/cannabidiol-based oromucosal spray that acts as an endocannabinoid system modulator. Sativex was recently approved for the management of resistant MS spasticity as add-on medication.

CONCLUSION:

Despite having a relatively high acquisition cost, Sativex was shown to be a cost-effective treatment option for patients with MS-related spasticity.”

http://www.ncbi.nlm.nih.gov/pubmed/22681512

Cost effectiveness of oromucosal cannabis-based medicine (sativex®) for spasticity in multiple sclerosis.

“Spasticity is common in patients with multiple sclerosis (MS) and is a major contributor to disability. Sativex®, an oromucosal spray containing cannabis-based medicinal products, has been found to be effective in reducing spasticity symptoms.

Our objective was to estimate the cost effectiveness of Sativex® plus oral anti-spasticity medicines compared with the current standard treatment for moderate or severe spasticity in MS in the UK.

CONCLUSIONS:

Using a willingness-to-pay threshold of £30 000 per QALY, Sativex® appears unlikely to be considered cost effective by UK funders of healthcare for spasticity in MS. This is unfortunate, since it appears that Sativex® use is likely to benefit some patients in the management of this common consequence of MS.”

http://www.ncbi.nlm.nih.gov/pubmed/23072659

A new multiple sclerosis spasticity treatment option: effect in everyday clinical practice and cost-effectiveness in Germany.

“Sativex(®) (GW Pharmaceuticals PLC, Porton Down, UK; Laboratorios Almirall, SA, Barcelona, Spain), a cannabinoid oromucosal spray containing a 1:1 ratio of 9-δ-tetrahydrocannabinol and cannabidiol, has been licensed in Germany since July 2011 as add-on therapy for moderate-to-severe multiple sclerosis (MS) treatment-resistant spasticity symptoms.

The ‘MOVE 2′ study evaluated clinical outcomes, treatment satisfaction, quality of life (QoL) and provision of care in MS patients with spasticity receiving Sativex in everyday clinical practice. Data from 300 patients were collected from 42 specialized MS centers across Germany and were available for this analysis. Assessments, including the MS spasticity 0-10 numerical rating scale, modified Ashworth scale, patients’ and physicians’ clinical impressions, and QoL scales were rated at baseline and at 1 and 3 months after starting treatment with Sativex.

 Sativex provided relief of MS-related spasticity in the majority of patients who were previously resistant to treatment. In addition, clear improvements were noted in MS spasticity-associated symptoms (e.g., sleep quality, bladder function and mobility), activities of daily living and QoL. Sativex was generally well tolerated. The majority of patients (84%) reported no adverse events, and there was only a limited risk of serious adverse reactions.

Furthermore, based on data from Sativex clinical trials, a Markov model-based analysis has shown that Sativex is a cost-effective treatment option for patients with MS spasticity in Germany.”

http://www.ncbi.nlm.nih.gov/pubmed/23369055