Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on. Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.”

Photo of colon composite

“It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.”

More: http://www.medicinenet.com/script/main/art.asp?articlekey=91511

Cannabis compound clue to colon cancer

“…taking substances similar to those found in cannabis might one day help to treat colon cancer.

Raymond DuBois and colleagues at the University of Texas, Houston, discovered that a key receptor for cannabinoids – compounds similar to the active ingredient of cannabis – is turned off in most types of human colon cancer cells.

 Similarly, mice genetically engineered to develop colon tumours developed more of them if the receptor, called CB1, was knocked out What’s more, tumours shrank when the genetically engineered mice were injected with a cannabinoid.

One suggestion is that lack of CB1 encourages tumour growth because the receptor normally interacts with cannabinoids made by the body to prompt cells to die. This opens up a possible two-step treatment for colon cancer…”

http://www.newscientist.com/article/mg19926685.000-cannabis-compound-clue-to-colon-cancer.html

Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer – TheWashingtonPost

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on.

Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.

It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.”

More: http://articles.washingtonpost.com/2008-08-01/news/36873908_1_colorectal-cancer-tumor-growth-smaller-tumors

Cannabinoid cell surface receptor plays a tumor-suppressing role in human colorectal cancer

“New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“We’ve found that CB1 expression is lost in most colorectal cancers, and when that happens a cancer-promoting protein is free to inhibit cell death,” said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president of The University of Texas M. D. Anderson Cancer Center.

DuBois and collaborators from Vanderbilt-Ingram Cancer Center also show that CB1 expression can be restored with an existing drug, decitabine. They found that mice prone to developing intestinal tumors that also have functioning CB1 receptors develop fewer and smaller tumors when treated with a drug that mimics a cannabinoid receptor ligand. Ligands are molecules that function by binding to specific receptors. Agonists are synthetic molecules that mimic the action of a natural molecule.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More: http://www.news-medical.net/news/2008/08/03/40485.aspx

Cannabinoids can inhibit tumor cell growth in highly invasive cancers

“A new study has found that Cannabinoids, the active components in marijuana, may aid in inhibiting tumor cell growth in highly invasive cancers.”

Fig. 4

“Although, Cannabinoids are used in reducing the side effects of cancer treatment, such as pain, weight loss, and vomiting, evidences indicate that they might even help in suppressing tumor invasion.

Robert Ramer, Ph.D., and Burkhard Hinz, Ph.D., of the University of Rostock in Germany investigated whether and by what mechanism cannabinoids hold back tumor cell invasion.

It was found that Cannabinoids did suppress tumor cell invasion and stimulated TIMP-1 expression.

TIMP-1 is an inhibitor of a group of enzymes involved in tumor cell invasion.

“To our knowledge, this is the first report of TIMP-1-dependent anti-invasive effects of cannabinoids,” the authors said.

They added: “This signaling pathway may play an important role in the antimetastatic action of cannabinoids, whose potential therapeutic benefit in the treatment of highly invasive cancers should be addressed in clinical trials.”

The study was published in the Journal of the National Cancer Institute (ANI)”

“Inhibition of Cancer Cell Invasion by Cannabinoids via Increased Expression of Tissue Inhibitor of Matrix Metalloproteinases-1” http://jnci.oxfordjournals.org/content/100/1/59.long

http://www.topnews.in/health/cannabinoids-can-inhibit-tumor-cell-growth-highly-invasive-cancers-2380 

Active Chemicals in Cannabis Inhibits Prostate Cancer Cell Growth

“According to researchers, active chemicals in cannabis inhibits prostate cancer cell growth…

cannabis

Professor Ines Diaz-Laviada, study author said: “Our research shows that there are areas on prostate cancer cells which can recognize and talk to chemicals found in cannabis called cannabinoids. These chemicals can stop the division and growth of prostate cancer cells and could become a target for new research into potential drugs to treat prostate cancer.””  http://www.elements4health.com/active-chemicals-in-cannabis-inhibits-prostate-cancer-cell-growth.html

“Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2″ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743360/

“Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism.” http://www.ncbi.nlm.nih.gov/pubmed/10570948

Marijuana Ingredient Inhibits VEGF Pathway Required For Brain Tumor Blood Vessels

“Cannabinoids, the active ingredients in marijuana, restrict the sprouting of blood vessels to brain tumors by inhibiting the expression of genes needed for the production of vascular endothelial growth factor (VEGF).

“Blockade of the VEGF pathway constitutes one of the most promising antitumoral approaches currently available,” said Manuel Guzmán, professor of biochemistry and molecular biology, with the Complutense University in Madrid, Spain, and the study’s principal investigator.

“The present findings provide a novel pharmacological target for cannabinoid-based therapies.””

More: http://www.sciencedaily.com/releases/2004/08/040816085401.htm

“Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas.” http://cancerres.aacrjournals.org/content/64/16/5617.long

Inhibition of tumor angiogenesis by cannabinoids

“Cannabinoids, the active components of marijuana and their derivatives, inhibit tumor growth in animal models… Because the generation of a new vascular supply (angiogenesis) is causally involved in the progression of the majority of solid tumors, the aim of this study was to test whether cannabinoids inhibit tumor angiogenesis.”

Figure 1.

“PRINCIPAL FINDINGS

1. Cannabinoid administration inhibits tumor angiogenesis

2. Cannabinoid administration inhibits vascular endothelial cell migration and survival

3. Cannabinoid administration inhibits tumor expression of proangiogenic factors and improves other markers of tumor malignancy

 

 …In the context of the renaissance in the study of the therapeutic effects of cannabinoids, our findings show that these compounds may be considered promising anti-tumoral agents as they inhibit tumor angiogenesis and growth in vivo with no significant side effects.

 This report provides a mechanistic basis for the anti-tumoral action of cannabinoids and a novel pharmacological target for cannabinoid-based anti-tumoral therapies…”

Full text:  http://www.fasebj.org/content/17/3/529.full

Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype.

“Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis…

Pretreatment with CBD also resulted in increased levels of the anti-inflammatory cytokine IL-10. Interestingly, CBD and THC did not affect the levels of TNFα and IFNγ. The downregulation of IL-17 secretion by these cannabinoids does not seem to involve the CB1, CB2, PPARγ, 5-HT1A or TRPV1 receptors…

In conclusion, the results show a unique cannabinoid modulation of the autoimmune cytokine milieu combining suppression of the pathogenic IL-17 and IL-6 cytokines along with boosting the expression of the anti-inflammatory cytokine IL-10.”

http://www.ncbi.nlm.nih.gov/pubmed/23892791

The use of cannabinoids in chronic pain.

“We present the case of a 56-year-old man who developed chronic pain following the excision of a facial cancer that was poorly controlled despite multiple analgesic medications. Following the starting of nabilone (a synthetic cannabinoid) his pain control was greatly improved and this had a huge impact on his quality of life.

We also managed to significantly reduce his doses of opioid analgesia and ketamine.

We review the current literature regarding the medicinal use of cannabinoids, with an emphasis on chronic pain, in an attempt to clarify their role and how to select patients who may benefit from this treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/23893276