Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy.

“The cannabinoid receptor type 2 (CB2) has protective effects in chronic degenerative diseases. Our aim was to assess the potential relevance of the CB2 receptor in both human and experimental diabetic nephropathy (DN)…

The CB2 receptor is expressed by podocytes, and in experimental diabetes, CB2 beneficialactivation ameliorates both albuminuria and podocyte protein loss, suggesting a protective effect of signaling through CB2 in DN.

In conclusion, our findings may have important implications for DN. The beneficial effect… makes CB2 agonism an attractive new strategy for the treatment of DN. CB2 activation may also positively affect other diabetes-related complications as CB2 agonists may, under certain conditions, delay progression of atherosclerotic lesions and ameliorate diabetes-induced neuropathic pain…

Our study may thus pave the way for future clinical trials on CB2 agonists in humans.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161308/

Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signaling.

“The cannabinoid receptor type 2 (CB2) is reduced in podocytes of animals and humans with Type 2 Diabetes Mellitus (T2DM), with activation of CB2 ameliorating albuminuria in animals. As albuminuria also is due to proximal tubule dysfunction, the aim of this study is to investigate tubular expression of CB2 under diabetic conditions in addition to the cell signaling pathways that underlie these changes…

We have demonstrated that internalization of albumin is required to reduce CB2 mRNA and protein expression in proximal tubules in vitro. Consequently, altered expression of CB2 in both the podocytes and tubules may contribute to the albuminuria observed in T2DM.”

http://www.ncbi.nlm.nih.gov/pubmed/24280624

Common polymorphism in the cannabinoid type 1 receptor gene (CNR1) is associated with microvascular complications in type 2 diabetes.

“Endocannabinoids exert their biological effects via interaction with G-protein coupled cannabinoid receptors CB1 and CB2. Polymorphisms in the CNR1 gene (encoding CB1 receptor) were previously found to be associated with dyslipidemia and cardiovascular diseases. We investigated a role of the polymorphism in CNR1 gene in type 2 diabetes and its complications…

The novel finding of our study is the association of the G1359A polymorphism with diabetic nephropathy and diabetic retinopathy in patients with T2DM. This polymorphism was also associated with cardiovascular disease in the patient group.”

http://www.ncbi.nlm.nih.gov/pubmed/24075694

CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release.

“Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability…

We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles.

These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.”

http://www.ncbi.nlm.nih.gov/pubmed/24089517

Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes.

“Circulating levels of anandamide are increased in diabetes, and cannabidiol ameliorates a number of pathologies associated with diabetes. The aim of the present study was to examine how exposure to anandamide or cannabidiol might affect endothelial dysfunction associated with Zucker Diabetic Fatty rats…

These studies suggest that increased circulating endocannabinoids may alter vascular function both positively and negatively in type 2 diabetes, and that part of the beneficial effect of cannabidiol in diabetes may be due to improved endothelium-dependent vasorelaxation.”

http://www.ncbi.nlm.nih.gov/pubmed/24120371

Cannabidiol lowers incidence of diabetes in non-obese diabetic mice.

“Cannabidinoids are components of the Cannabis sativa (marijuana) plant that have been shown capable of suppressing inflammation and various aspects of cell-mediated immunity.

Cannabidiol (CBD), a non-psychoactive cannabinoid has been previously shown by us to suppress cell-mediatedautoimmune joint destruction in an animal model of rheumatoid arthritis.

We now report that CBD treatment significantly reduces the incidence of diabetes in NOD mice from an incidence of 86% in non-treated control mice to an incidence of 30% in CBD-treated mice…

Our results indicate that CBD can inhibit and delay destructive insulitis and inflammatory Th1-associated cytokine production in NOD mice resulting in a decreased incidence of diabetes possibly through an immunomodulatory mechanism shifting the immune response from Th1 to Th2 dominance.”

http://www.ncbi.nlm.nih.gov/pubmed/16698671

Cannabidiol arrests onset of autoimmune diabetes in NOD mice.

Figure 2

“Cannabidiol (CBD) is a potent anti-inflammatory agent. It is effective in supressing IFN-γ and TNF-α production and progression of autoimmune Th1-mediated rheumatoid arthritis by inhibition of T cell proliferation. This observation led us to investigate the possible effects of CBD on additional autoimmune diseases.

We have previously reported that cannabidiol (CBD) lowers the incidence of diabetes in young non-obese diabetes-prone (NOD) female mice.

In the present study we show that administration of CBD to 11-14 week old female NOD mice… ameliorates the manifestations of the disease…

CBD was extracted from Cannabis resin (hashish)…

Our data strengthen our previous assumption that CBD, known to be safe in man, can possibly be used as a therapeutic agent for treatment of type 1 diabetes.

CBD is not psychoactive and has anti-inflammatory and anti autoimmune properties.

Based on the above presented results, on the previously documented anti-inflammatory effects of CBD and on its clinical safety, it seems reasonable to consider the use of CBD for controlling type 1 diabetes at an early stage of the disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270485/

A biosynthetic pathway for anandamide

“The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released “on demand” by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD).

Here we document a biosynthetic pathway for anandamide in mouse brain…

Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.

The observed exclusive role of the PLC/phosphatase pathway in LPS-induced AEA synthesis may offer therapeutic targets for the treatment of these conditions.

Furthermore, cannabinoids have immunosuppressive effects in autoimmune models of multiple sclerosis and diabetes, and mice deficient in CB1 receptors show increased susceptibility to neuronal damage found in autoimmune encephalitis…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557387/#!po=23.3333

Multiple sclerosis may disrupt endocannabinoid brain protection mechanism

An external file that holds a picture, illustration, etc.
Object name is zpq0180620550001.jpg

“Since the discovery of the endocannabinoids [eCB; anandamide and 2-arachidonoylglycerol (2-AG), various pathological conditions were shown to increase the eCB tone and to inhibit molecular mechanisms that are involved in the production, release, and diffusion of harmful mediators such as proinflammatory cytokines or excess glutamate.

In this issue of PNAS, Witting et al.  demonstrate that, unexpectedly and contrary to the effects of other brain diseases, cell damage induced by experimental autoimmune encephalomyelitis (EAE), an immune-mediated disease widely used as a laboratory model of multiple sclerosis (MS), does not lead to enhancement of eCB levels, although the cannabinoid receptors remain functional.

Nearly two decades ago, Lyman et al.  reported that Δ9-THC, the psychoactive component of marijuana, suppresses the symptoms of EAE. A few years later, Wirguin et al. reported the same effect by Δ8-THC, a more stable and less psychotropic analogue of Δ9-THC.

Thus, THC was shown to inhibit both clinical and histological signs of EAE even before the endocannabinoids were described.

THC was also shown to control spasticity and tremor in chronic relapsing EAE, a further autoimmune model of MS , and to inhibit glutamate release via activation of the CB1-cannabinoid receptor in EAE. Moreover, mice deficient in the cannabinoid receptor CB1 tolerate inflammatory and excitotoxic insults poorly and develop substantial neurodegeneration after immune attack in EAE.

Thus, the brain loses some of its endogenous neuroprotective capacity, but it may still respond to exogenous treatment with 2-AG or other CB1 agonists. Assuming that the biochemical changes taking place in the EAE model of MS are similar to those in MS itself, these results represent a biochemical-based support to the positive outcome noted with cannabinoid therapy in MS.

These data suggest that the high level of IFN-γ in the CNS, noted in mice with EAE, disrupts eCB-mediated neuroprotection, while maintaining functional cannabinoid receptors, thus providing additional support for the use of cannabinoid-based medicine to treat MS.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458835/

Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection

An external file that holds a picture, illustration, etc.<br />
Object name is zpq0130617490001.jpg

“Focal cerebral ischemia and traumatic brain injury induce an escalating amount of cell death because of harmful mediators diffusing from the original lesion site.

Evidence suggests that healthy cells surrounding these lesions attempt to protect themselves by producing endocannabinoids (eCBs) and activating cannabinoid receptors, the molecular target for marijuana-derived compounds.

Indeed, activation of cannabinoid receptors reduces the production and diffusion of harmful mediators.

Here, we provide evidence that an exception to this pattern is found in experimental autoimmuneencephalomyelitis (EAE), a mouse model of multiple sclerosis…

Our data suggest that the high level of CNS IFN-gamma associated with EAE disrupts eCB-mediated neuroprotection while maintaining functional cannabinoid receptors, thus providing additional support for the use of cannabinoid-based medicine to treat multiple sclerosis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458883/