Cannabinoids inhibit migration of microglial-like cells to the HIV protein Tat.

“Microglia are a population of macrophage-like cells in the central nervous system (CNS) which, upon infection by the human immunodeficiency virus (HIV), secrete a plethora of inflammatory factors, including the virus-specified trans-activating protein Tat.

Tat has been implicated in HIV neuropathogenesis since it elicits chemokines, cytokines, and a chemotactic response from microglia. It also harbors a β-chemokine receptor binding motif, articulating a mode by which it acts as a migration stimulus.

Since select cannabinoids have anti-inflammatory properties, cross the blood-brain barrier, and target specific receptors, they have potential to serve as agents for dampening untoward neuroimmune responses.

The aim of this study was to investigate the effect of select cannabinoids on the migration of microglial-like cells toward Tat.

…it was demonstrated that the exogenous cannabinoids Delta-9-tetrahydrocannabinol (THC) and CP55940 exerted a concentration-related reduction in the migration of BV-2 cells towards Tat.

These results indicate that cannabinoid-mediated inhibition of BV-2 microglial-like cell migration to Tat is linked functionally to the CB2R…”

http://www.ncbi.nlm.nih.gov/pubmed/21735070

Cannabinoid inhibition of macrophage migration to the trans-activating (Tat) protein of HIV-1 is linked to the CB(2) cannabinoid receptor.

“Macrophages and macrophage-like cells are important targets of HIV-1 infection at peripheral sites and in the central nervous system…

 

Collectively, the pharmacological and biochemical knockdown data indicate that cannabinoid-mediated modulation of macrophage migration to the HIV-1 Tat protein is linked to the CB(2)cannabinoid receptor.

Furthermore, these results suggest that the CB(2) cannabinoid receptor has potential to serve as a therapeutic target for ablation of HIV-1-associated untoward inflammatory response.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846023/

 http://www.thctotalhealthcare.com/category/hivaids/

 

Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute SIV infection of rhesus macaques.

“In SIV-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC), inhibited viral replication, intestinal inflammation and slowed disease progression.

Persistent gastrointestinal disease/inflammation has been proposed to facilitate microbial translocation, systemic immune activation and promote disease progression. Cannabinoids including Δ9-THC attenuated intestinal inflammation in mouse colitis models and SIV-infected rhesus macaques…

Gastrointestinal tract (GI) disease/inflammation is a hallmark of HIV/SIV infection. Previously, we showed that chronic treatment of SIV-infected macaques with Δ9 tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection induced gastrointestinal inflammation.

Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile…

Overall, our results show that selective upregulation of anti-inflammatory miRNA expression, contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.”