The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

“The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain.

In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function.

The CB1 receptor also confers neuroprotection in various experimental models of striatal damage…

Here, by using an array of pharmacological, genetic and pharmacogenetic approaches, we show that (1) CB1receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors.

Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.”

http://www.ncbi.nlm.nih.gov/pubmed/25698444

4-hydroxy-3-methoxy-acetophenone-mediated long-lasting memory recovery, hippocampal neuroprotection, and reduction of glial cell activation after transient global cerebral ischemia in rats.

“4-Hydroxy-3-methoxy-acetophenone (apocynin) is a naturally occurring methoxy-substitute catechol that is isolated from the roots of Apocynin cannabinum (Canadian hemp) and Picrorhiza kurroa (Scrophulariaceae).

It has been previously shown to have antioxidant and neuroprotective properties in several models of neurodegenerative disease, including cerebral ischemia.

The present study investigates the effects of apocynin on transient global cerebral ischemia (TGCI)-induced retrograde memory deficits in rats.

The protective effects of apocynin on neurodegeneration and the glial response to TGCI are also evaluated.

The present results confirm that TGCI causes memory impairment in the AvRM and that apocynin prevents these memory deficits and attenuates hippocampal neuronal death in a sustained way.

These findings support the potential role of apocynin in preventing neurodegeneration and cognitive impairments following TGCI in rats.

The long-term protective effects of apocynin may involve inhibition of the glial response.”

http://www.ncbi.nlm.nih.gov/pubmed/25702923

Cannabidiol (CBD) and its analogs: a review of their effects on inflammation.

“First isolated from Cannabis in 1940 by Roger Adams, the structure of CBD was not completely elucidated until 1963.

Subsequent studies resulted in the pronouncement that THC was the ‘active’ principle of Cannabis and research then focused primarily on it to the virtual exclusion of CBD.

This was no doubt due to the belief that activity meant psychoactivity that was shown by THC and not by CBD.

In retrospect this must be seen as unfortunate since a number of actions of CBD with potential therapeutic benefit were downplayed for many years.

In this review, attention will be focused on the effects of CBD in the broad area of inflammation where such benefits seem likely to be developed.

Topics covered in this review are; the medicinal chemistry of CBD, CBD receptor binding involved in controlling Inflammation, signaling events generated by CBD, downstream events affected by CBD (gene expression and transcription), functional effects reported for CBD and combined THC plus CBD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25703248

Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: contribution of 5HT1A receptors and stressful experiences.

“The infralimbic (IL) and prelimbic (PL) regions of the prefrontal cortex are involved in behavioral responses observed during defensive reactions.

Intra-PL or IL injections of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, result in opposite behavioral effects in the contextual fear conditioning (CFC) paradigm…

Together these results indicate that CBD effects in the IL depend on the nature of the animal model, being influenced by previous stressful experiences and mediated by facilitation of 5HT1A receptors-mediated neurotransmission.”

http://www.ncbi.nlm.nih.gov/pubmed/25701682

Cannabinoid signaling and liver therapeutics.

Journal of Hepatology Home

“Over the last decade, the endocannabinoid system has emerged as a pivotal mediator of acute and chronic liver injury, with the description of the role of CB1 and CB2 receptors and their endogenous lipidic ligands in various aspects of liver pathophysiology.

A large number of studies have demonstrated that CB1 receptor antagonists represent an important therapeutic target, owing to beneficial effects on lipid metabolism and in light of its antifibrogenic properties.

Unfortunately, the brain-penetrant CB1 antagonist rimonabant, initially approved for the management of overweight and related cardiometabolic risks, was withdrawn because of an alarming rate of mood adverse effects.

However, the efficacy of peripherally-restricted CB1 antagonists with limited brain penetrance has now been validated in preclinical models of NAFLD, and beneficial effects on fibrosis and its complications are anticipated.

CB2 receptor is currently considered as a promising anti-inflammatory and antifibrogenic target, although clinical development of CB2 agonists is still awaited.

In this review, we highlight the latest advances on the impact of the endocannabinoid system on the key steps of chronic liver disease progression and discuss the therapeutic potential of molecules targeting cannabinoid receptors…

Overwhelming evidence supports the therapeutic potential of peripherally-restricted CB1 antagonists and CB2 agonists in the management of chronic liver diseases.”

http://www.journal-of-hepatology.eu/article/S0168-8278(13)00212-2/fulltext

http://www.thctotalhealthcare.com/category/liver-disease/

Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice.

“Activation of Kupffer cells plays a central role in the pathogenesis of alcoholic liver disease.

Because cannabinoid CB2 receptors (CB2) display potent anti-inflammatory properties, we investigated their role in the pathogenesis of alcoholic liver disease, focusing on the impact of CB2 on Kupffer cell polarization and the consequences on liver steatosis.

Altogether, these findings demonstrate that CB2 receptors display beneficial effects on alcohol-induced inflammation by regulating M1/M2 balance in Kupffer cells, thereby reducing hepatocyte steatosis via paracrine interactions between Kupffer cells and hepatocytes.

These data identify CB2 agonists as potential therapeutic agents for the management of alcoholic liver disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21735467

http://www.thctotalhealthcare.com/category/liver-disease/

Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects.

“A multitude of physiological effects and putative pathophysiological roles have been proposed for the endogenous cannabinoid system in the gastrointestinal tract, liver and pancreas.

These range from effects on epithelial growth and regeneration, immune function, motor function, appetite control, fibrogenesis and secretion.

Cannabinoids have the potential for therapeutic application in gut and liver diseases.

Two exciting therapeutic applications in the area of reversing hepatic fibrosis as well as antineoplastic effects may have a significant impact in these diseases.

This review critically appraises the experimental and clinical evidence supporting the clinical application of cannabinoid receptor-based drugs in gastrointestinal, liver and pancreatic diseases.

Application of modern pharmacological principles will most probably expand the selective modulation of the cannabinoid system peripherally in humans.

We anticipate that, in addition to the approval in several countries of the CB(1) antagonist, rimonabant, for the treatment of obesity and associated metabolic dysfunctions, other cannabinoid modulators are likely to have an impact on human disease in the future, including hepatic fibrosis and neoplasia.”

http://www.ncbi.nlm.nih.gov/pubmed/18397936

http://www.thctotalhealthcare.com/category/liver-disease/

Cannabinoids and capsaicin improve liver function following thioacetamide-induced acute injury in mice.

“We have shown the beneficial effects of cannabinoids in a murine model of hepatic encephalopathy following thioacetamide and now report their effects on the liver injury…

The similar pattern found between the effect of cannabinoids and their antagonists on brain and liver indicated that the therapeutic effect might be directed by the improvement in both organs through CB2 receptors and/or TRPV1 receptors.

Modulation of these systems may have therapeutic potential.”

http://www.ncbi.nlm.nih.gov/pubmed/19086956

http://www.thctotalhealthcare.com/category/liver-disease/

Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration.

Logo of hal

“Accumulating data indicate that the cannabinoid system is a crucial mediator in the pathogenesis of a variety of liver diseases.

In the present study we show that CB2 receptors reduce liver injury and accelerate liver regeneration via distinct pathways.

CB2 receptors reduce liver injury and promote liver regeneration following acute insult, via distinct paracrine mechanisms involving hepatic myofibroblasts.

These results suggest that CB2 agonists display potent hepatoprotective properties, in addition to their antifibrogenic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246453/
“Association of the cannabinoid receptor 2 (CB2) Gln63Arg polymorphism with indices of liver damage in obese children: an alternative way to highlight the CB2 hepatoprotective properties.” http://www.ncbi.nlm.nih.gov/pubmed/21608006

http://www.thctotalhealthcare.com/category/liver-disease/

Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver.

An external file that holds a picture, illustration, etc.<br /><br />
Object name is pnas.1017689108fig02.jpg

“The mammalian liver regenerates upon tissue loss, which induces quiescent hepatocytes to enter the cell cycle and undergo limited replication under the control of multiple hormones, growth factors, and cytokines.

Endocannabinoids acting via cannabinoid type 1 receptors (CB(1)R) promote neural progenitor cell proliferation, and in the liver they promote lipogenesis.

These findings suggest the involvement of CB(1)R in the control of liver regeneration…

We conclude that activation of hepatic CB(1)R by newly synthesized anandamide promotes liver regeneration by controlling the expression of cell-cycle regulators that drive M phase progression.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076854/

http://www.thctotalhealthcare.com/category/liver-disease/