Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system.

Image result for cannabis

“One of the oldest pharmacological remedies for nausea and vomiting is the plant cannabis…

Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes.

This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis.

With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally.

Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions…

Nausea and vomiting are frequently debilitating conditions that require substantial effort and cost to manage.

Advances in recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system have revealed significant potential for therapeutic approaches to be developed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883513/

http://www.thctotalhealthcare.com/category/nauseavomiting/

Components of the endocannabinoid and dopamine systems are dysregulated in Huntington’s disease: analysis of publicly available microarray datasets.

“The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington’s disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated…

The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage- and tissue-specific transcriptional dysregulation in HD.

The major implication of the systems-wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems.”

http://www.ncbi.nlm.nih.gov/pubmed/25692022

http://www.thctotalhealthcare.com/category/huntingtons/

Cannabinoids suppress acute and anticipatory nausea in pre-clinical rat models of conditioned gaping.

“The sensation of nausea is one of the most debilitating human experiences. Current anti-emetic therapies are effective in reducing vomiting, but are less effective in reducing acute and delayed nausea and are completely ineffective in reducing anticipatory nausea.

Recent pre-clinical evidence using a selective rat model of nausea (conditioned gaping reactions) has revealed that cannabinoids have great promise as treatments for nausea and that their anti-nausea effects may be mediated by the interoceptive insular cortex.”

http://www.ncbi.nlm.nih.gov/pubmed/25691302

http://www.thctotalhealthcare.com/category/nauseavomiting/

Anandamide Drives Cell Cycle Progression through CB1 Receptors in a Rat Model of Synchronized Liver Regeneration.

“The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions.

… liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy…

These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.”

 http://www.ncbi.nlm.nih.gov/pubmed/25684344

http://www.thctotalhealthcare.com/category/liver-disease/

Activation of Cannabinoid Receptor 2 Enhances Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells.

“Bone marrow derived mesenchymal stem cells (BM-MSCs) are considered as the most promising cells source for bone engineering.

Cannabinoid(CB) receptors play important roles in bone mass turnover.

The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs…

Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs.

Lack of CB2 receptor may be related to osteoporosis.

These results demonstrate that the activation of CB2 signaling is essential for the maintenance of normal bone mass.

Manipulating CB2 signaling may offer a molecular tool for the increasing osteogenic differentiation of stem cells.”

http://www.hindawi.com/journals/bmri/2015/874982/

http://www.thctotalhealthcare.com/category/osteoporosis-2/

 

Tonic Modulation of Nociceptive Behavior and Allodynia by Cannabinoid Receptors in Formalin Test in Rats.

“Cannabinoids produce anti-nociceptive and anti-hyperalgesic effects in acute, inflammatory and neuropathic pain models.

The current study investigated the role of cannabinoid (CB1 and CB2) receptors in modulating formalin-induced nociceptive behavior and mechanical allodynia in the rat…

The results indicate that CB1 and CB2 receptors mediate a tonically inhibitory action on formalin-induced inflammatory pain, especially long-term allodynia, in bilateral hind paws.”

http://www.ncbi.nlm.nih.gov/pubmed/25687494

http://www.thctotalhealthcare.com/category/pain-2/

Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice

Cover image

“Hepatocellular carcinomas will emerge as a major form of malignancy in the coming decades.

When these tumors are in advanced stages, few therapeutic options are available.

Therefore, it is essential to search for new treatment modalities to fight this disease.

Aim

Evaluate the possible protective and therapeutic effects of Cannabis extract on dimethylnitrosamine (DMNA)-induced hepatocarcinogenicity in mice.

Conclusion

The protective effect of cannabis extract is more pronounced in group taking cannabis before DMNA.

Cannabinoids might exert their anti-tumor effects by the direct induction of apoptosis and can decrease telomerase activity by inhibiting the expression of the TERT gene…”

http://www.sciencedirect.com/science/article/pii/S209050681400027X

 http://www.thctotalhealthcare.com/category/liver-cancer-2/

Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol.

“Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa with anti-inflammatory and neuroprotective properties induces antipsychotic-like effects.

The present study evaluated if repeated treatment with CBD would attenuate the behavioral and glial changes observed in an animal model of schizophrenia…

These data reinforces the proposal that CBD may induce antipsychotic-like effects.

Although the possible mechanism of action of these effects is still unknown, it may involve CBD anti-inflammatory and neuroprotective properties.

Furthermore, our data support the view that inhibition of microglial activation may improve schizophrenia symptoms.”

http://www.ncbi.nlm.nih.gov/pubmed/25680767

http://www.thctotalhealthcare.com/category/schizophrenia/

Exploiting Cannabinoid-Induced Cytotoxic Autophagy to Drive Melanoma Cell Death.

“While the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain less than 10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wildtype tumours.

Targeting autophagy is a novel means to promote cancer cell death in chemotherapy-resistant tumours and the aim of the present study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma.

Treatment with Δ9-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability and activation of apoptosis, while co-treatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro.

Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wildtype melanoma xenografts substantially inhibited melanoma viability, proliferation and tumour growth paralleled by an increase in autophagy and apoptosis compared to standard single agent temozolomide.

Collectively our findings suggest THC activates non-canonical autophagy-mediated apoptosis of melanoma cells, suggesting cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25674907

http://www.thctotalhealthcare.com/category/melanoma/

Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2.

“Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber.

Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis.

Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors.

Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others.

Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors…”

http://www.ncbi.nlm.nih.gov/pubmed/25419092