Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro.

“Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain.

Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells.

Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation.

Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.”

http://www.ncbi.nlm.nih.gov/pubmed/25963415

http://www.thctotalhealthcare.com/category/brain-trauma/

 

Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target.

Figure 2

“Glioblastoma (GBM) is the most common form of primary adult brain tumors…

It is, therefore, essential to discover master regulators that control GBM invasiveness and target them therapeutically.

We demonstrate here that the transcriptional regulator Id-1 plays a critical role in modulating the invasiveness of GBM cell lines and primary GBM cells.

Furthermore, we show that a non-toxic compound, cannabidiol, significantly down-regulates Id-1 gene expression and associated glioma cell invasiveness…

Our results suggest that Id-1 regulates multiple tumor-promoting pathways in GBM, and that drugs targeting Id-1 represent a novel and promising strategy for improving the therapy and outcome of GBM patients.

We previously showed a strong correlation between Id-1 expression and the invasive and metastatic behavior of breast cancer cells.”

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells… CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells…  Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types…”  http://mct.aacrjournals.org/content/6/11/2921.long

“In this report, we show that Id-1 is a key regulator of brain tumor cell invasiveness and neurosphere growth, and that Id-1 expression is specifically up-regulated in tissues from patients with high-grade gliomas. Importantly, we demonstrate that targeting Id-1 expression using either genetic approaches or the non-toxic cannabinoid, cannabidiol (CBD), leads to a significant reduction in the invasion of both GBM cell lines and patient-derived primary GBM cultures. CBD also significantly inhibits GBM dispersal ex vivo, and reduces tumor growth and Id-1 expression in vivo.

Consistent with the breast cancer study, we found that the non-psychoactive cannabinoid CBD significantly down-regulated Id-1 expression in serum-derived and primary GBM cells. As expected, we observed robust inhibition of glioma cell invasiveness.

In conclusion, our results establish Id-1 as a key regulator of both invasion and stemness in GBM cells and demonstrate that the non-toxic cannabinoid compound CBD down-regulates Id-1 expression and tumor aggressiveness in culture and in vivo.

The data also shed light on some of the key pathways that control GBM cell dispersal and progression. A greater understanding of these pathways may lead to more effective therapies for cancer patients including the additional refinement of cannabinoid analogs targeting Id-1.

We expect our efforts to ultimately translate to the development of future clinical trials with nontoxic compounds that target the expression of Id-1, a master regulator of GBM aggressiveness.

With its lack of systemic toxicity and psychoactivity, CBD is an ideal candidate agent in this regard and may prove useful in combination with front-line agents for the treatment of patients with aggressive and high-grade GBM tumors.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594064/

“McAllister Lab… Cannabidiol inhibits tumor (glioblastoma) progression in mouse models of brain cancer. Mice bearing human brain tumors derived from glioblastoma were treated with the naturally occurring cannabinoid, cannabidiol (CBD).”  http://www.cpmcri-currents.org/our-people/discovery-investigators/mcallister-lab

“New Study Finds Cannabis Compound Could Have Even Greater Reach in Inhibiting Aggressive Cancer than Previously Thought. Researchers at California Pacific Medical Center Research Institute (CPMCRI, a Sutter Health affiliate) have found that a compound in cannabis previously shown to decrease metastatic breast cancer now shows promise in stopping aggressive brain cancer as well. The findings are particularly important given the safety of the cannabis compound and the fact that patients with advanced brain cancer have few options for treatment.”  http://www.cpmc.org/about/press/news2012/cannabis-brain.html

http://www.thctotalhealthcare.com/category/brain-cancer/

Glioblastoma progression in mouse models of brain cancer, after treatment with CBD

The evolving role of the endocannabinoid system in gynaecological cancer.

Image result for "Human reproduction update" 2015 Jul-Aug

“The ‘endocannabinoid system’ (ECS), comprising endogenous ligands (endocannabinoids) and their regulating enzymes, together with the cannabinoid receptors, has attracted a great deal of attention because it affects not only all facets of human reproduction, from gametogenesis through to parturition and beyond, but also targets key mechanisms affecting some hallmarks of cancer.

Recent evidence showing that cannabinoid receptors play a very important role in the development of malignancies outside of the reproductive organs suggests a similar role for the ECS in the establishment or continued development of gynaecological malignancy.

More than 2100 sources were obtained from which only 112 were specifically important to the topic. Analysis of those articles supports a role of the ECS in gynaecological cancers but leaves many gaps in our knowledge that need to be filled.

 

How some of the relevant receptors are activated and cause changes in cell phenotypes that progress to malignancy remains undiscovered and an area for future research. Increasing evidence suggests that malignant transformation within the female genital tract could be accompanied by deregulation of components of the ECS, acting through rather complex cannabinoid receptor-dependent and receptor-independent mechanisms.

 

The paucity of studies in this area suggests that research using animal models is needed to evaluate endocannabinoid signalling in cancer networks. Future randomized clinical studies should reveal whether endocannabinoids or their derivatives prove to be useful therapeutic targets for gynaecological and other cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/25958409

Lipopolysaccharide-induced murine embryonic resorption involves changes in endocannabinoid profiling and alters progesterone secretion and inflammatory response by a CB1-mediated fashion.

“Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resoprtion.

Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response.

We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption.

These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.”

http://www.ncbi.nlm.nih.gov/pubmed/25958042

Downstream effects of endocannabinoid on blood cells: implications for health and disease.

“Endocannabinoids (eCBs), among which N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are the most biologically active members, are polyunsaturated lipids able to bind cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Depending on the target engaged, these bioactive mediators can regulate different signalling pathways, at both central and peripheral levels.

The biological action of eCBs is tightly controlled by a plethora of metabolic enzymes which, together with the molecular targets of these substances, form the so-called “endocannabinoid system”.

The ability of eCBs to control manifold peripheral functions has received a great deal of attention, especially in the light of their widespread distribution in the body.

In particular, eCBs are important regulators in blood, where they modulate haematopoiesis, platelet aggregation and apoptosis, as well as chemokine release and migration of immunocompetent cells.

Here, we shall review the current knowledge on the pathophysiological roles of eCBs in blood. We shall also discuss the involvement of eCBs in those disorders affecting the haematological system, including cancer and inflammation.

Knowledge gained to date underlines a fundamental role of the eCB system in blood, thus suggesting that it may represent a therapeutic promise for a broad range of diseases involving impaired hematopoietic cell functions.”

http://www.ncbi.nlm.nih.gov/pubmed/25957591

A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

Logo of nutrients

“This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR)…

The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.”

http://www.ncbi.nlm.nih.gov/pubmed/25493943

“Cannabis sativa L., also commonly called industrial hemp seed, is historically an important source of food, fibre, dietary oil and medicine; the seed contains about 30% oil and 25% protein…

Proteins from both plant and animal sources, including those of hemp seed, have been isolated and recognized as essential sources of bioactive peptides capable of exerting various in vitro and in vivo activities, such as antioxidant, antihypertensive, antimicrobial, opioid, antithrombotic, hypocholesterolemic, appetite-reducing, mineral-binding, immunomodulatory and cytomodulatory…

HMH may serve as an important ingredient to formulate antioxidant diets with potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276990/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

The cannabinoid CB₂ receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain.

European Neuropsychopharmacology Home

“The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressedcannabinoid receptor 2 (CB₂).

…the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.

Cannabis preparations, which have been used since thousands of years for the treatment of pain have recently come again into the focus as potential therapeutics for inflammatory and neuropathic pain conditions. Currently, cannabis extracts and synthetic preparations of the psychoactive cannabis compound Δ9-tetrahydrocannabinol (THC) have been approved in many countries for clinical pain management at doses and formulations that show on only minor central side effects…

A natural selective agonist for CB2 receptors is the plant volatile BCP, which represents a dietary phytocannabinoid. BCP is found in large amounts in the essential oils of many common spices and food plants… Several health effects have been attributed to BCP or medicinal plants containing BCP, including anti-inflammatory, local anesthetic, anti-carcinogenic, anti-fibrotic and anxiolytic-like activity.

In the present study, we investigated the analgesic effects of BCP in formalin-induced inflammation model and in a model of neuropathic pain, which involves the partial ligation of the sciatic nerve… BCP is the first natural CB2 receptor agonist, which could orally reduce inflammatory responses in different animal models of pain.

Thus, it is likely that BCP belongs to a group of common plant natural products with major potential impact on human health.

The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.”

http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

http://www.thctotalhealthcare.com/category/neuropathic-pain/

Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.

Logo of molpain

“Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor.

Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states.

One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoidreceptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state.

The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state.

Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN.

These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.”  http://www.ncbi.nlm.nih.gov/pubmed/20236533

“Tetrahydrocannabinol (THC), a component in marijuana, acts at both CB1 and CB2 receptors, but other forms of cannabinoids such as cannabinol and cannabidiol act predominantly at CB2 receptors. Such CB2 agonists may be potential anti-inflammatory therapies, antagonizing the 2-AG-induced recruitment of microglia and impacting upon development of an inflammatory state. Such properties may permit the cannabinoids to act in the prevention of microglial activation, perhaps limiting the development of neuropathic pain.

The present data confirm the efficacy of cannabinoid agonists, both for the CB1 and CB2 receptor, in modulation of acute thermal and tactile hypersensitivity as features of neuropathic pain. Furthermore, CB1 agonism from the onset of the offending stimulus (diabetes) normally leading to neuropathic pain ameliorated the development of a neuropathic pain state.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845559/

http://www.thctotalhealthcare.com/category/neuropathic-pain/

 

The role of cannabinoids in adult neurogenesis.

“Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes.

Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, likely through activation of both CB1 and CB2receptors.

In recent years a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarises the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs, and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets.

Overall these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles, and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain.”

The relationship between cannabidiol and psychosis: A review.

“Cannabis sativa is the most widely used illicit drug in the world…

THC is considered responsible for the main psychotropic effects of the drug, while CBD seems to antagonize these effects, particularly those that induce psychosis.

The effects of Cannabis seem to depend on several variables related to the type of plant, its strength, usage patterns, and intersubjective variations.

CBD could be used to treat several conditions, including psychosis, when the current treatment is associated with significant side effects.

…further research involving the possible antipsychotic effect and other potential positive effects of Cannabis are needed.”

http://www.ncbi.nlm.nih.gov/pubmed/25954940

http://www.thctotalhealthcare.com/category/schizophrenia/