Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology.

“Cannabidiol (CBD) has anti-inflammatory effects.

We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform…

Compared to controls, CBD treatment improved systolic wall thickening, significantly increased blood flow in the AAR, significantly decreased microvascular obstruction, increased the PDR by 1.7-fold, lowered the AMI-core/AAR ratio, and increased the MSI.

These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis.

Thus, CBD therapy reduced AMI size and facilitated restoration of LV function.

We demonstrated that this experimental platform has potential theragnostic utility.”

http://www.ncbi.nlm.nih.gov/pubmed/26065843

Neurobiological Interactions Between Stress and the Endocannabinoid System.

“Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes.

A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response.

In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling play with respect to many of the effects of stress.

Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels.

Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a down-regulation or loss of cannabinoid type 1 (CB1) receptors.

With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception and synaptic plasticity.

More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and post-traumatic stress disorder.

Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.”

http://www.ncbi.nlm.nih.gov/pubmed/26068727

Intrathecal cannabinoid-1 receptor agonist prevents referred hyperalgesia in acute acrolein-induced cystitis in rats.

“We investigated the capacity of intrathecal arachidonyl-2′-chloroethylamide (ACEA), a cannabinoid-1 receptor (CB1R) agonist, to inhibit referred hyperalgesia and increased bladder contractility resulting from acute acrolein-induced cystitis in rats…

These findings suggest that pain arising from cystitis may be inhibited by activation of spinal CB1R but the acute local response of the bladder appeared to be unaffected by stimulation of spinal CB1R.”

http://www.ncbi.nlm.nih.gov/pubmed/26069885

In vivo inflammation imaging using a CB2R-targeted near infrared fluorescent probe.

“Chronic inflammation is considered as a critical cause of a host of disorders, such as cancer, rheumatoid arthritis, atherosclerosis, and neurodegenerative diseases…

Imaging tools that can specifically target inflammation are therefore important to help reveal the role of inflammation in disease progression, and allows for developing new therapeutic strategies to ultimately improve patient care.

The purpose of this study was to develop a new in vivo inflammation imaging approach by targeting the cannabinoid receptor type 2 (CB2R), an emerging inflammation biomarker, using a unique near infrared (NIR) fluorescent probe…

The combined evidence indicates that NIR760-mbc94 is a promising inflammation imaging probe. Moreover, in vivo CB2R-targeted fluorescence imaging may have potential in the study of inflammation-related diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26069858

Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date.

“While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality.

One would thus expect cannabis use to be associated with dopamine signaling alterations.

This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man…

In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. ”

http://www.ncbi.nlm.nih.gov/pubmed/26068702

Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.

“The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol.

In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain.

Changes found in these biomarkers of the ECS correlated with pain, affective and cognitive symptoms in these patients.

The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.”

http://www.ncbi.nlm.nih.gov/pubmed/26067584

http://www.thctotalhealthcare.com/category/osteoarthritis/

Combined neuroprotective action of adenosine A1 and cannabinoid CB1 receptors against NMDA-induced excitotoxicity in the hippocampus.

“Both adenosine A1 and cannabinoid CB1 receptors trigger similar transduction pathways and protect against neurotoxic insults at the hippocampus, but their combined neuroprotective potential has not been investigated.

We set forth to assess the combined action of A1 and CB1 receptors against glutamate NMDA receptor-mediated excitotoxicity at the hippocampus…

The results suggest that both CB1 and A1 receptors produce additive cumulative neuroprotection against NMDA-induced excitotoxicity in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/26065937

New horizons for newborn brain protection: enhancing endogenous neuroprotection.

“Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE).

The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised.

Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear.

It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.

There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE.

In this review, we focus on strategies that can augment the body’s own endogenous neuroprotection.

We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult.

Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential.

Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.”

http://www.ncbi.nlm.nih.gov/pubmed/26063194

[Over-expression of cannabinoid receptor 2 induces the apoptosis of cervical carcinoma Caski cells].

“Objective: To construct a eukaryotic expression vector containing human cannabinoid receptor 2 (hCB2R) gene and investigate its expression, location and the influence on the apoptosis of cervical cancer Caski cells.

Conclusion: The up-regulated expression of hCB2R could induce cell apoptosis by enhancing the expressions of Bax, Bad and suppressing the expression of Bcl-2 in Caski cells.”

http://www.ncbi.nlm.nih.gov/pubmed/26062417

http://www.thctotalhealthcare.com/category/cervical-cancer/

Medical Marijuana in Pediatric Neurological Disorders.

“Marijuana and marijuana-based products have been used to treat medical disease.

Recently, derivatives of the plant have been separated or synthesized to treat various neurological disorders, many of them affecting children.

Unfortunately, data are sparse in regard to treating children with neurologic illness. Therefore, formal conclusions about the potential efficacy, benefit, and adverse effects for these products cannot be made at this time.

Further robust research using strong scientific methodology is desperately needed to formally evaluate the role of these products in children.”

http://www.ncbi.nlm.nih.gov/pubmed/26060306

“The endocannabinoid-CB receptor system: Importance for development and in pediatric disease.”  http://www.ncbi.nlm.nih.gov/pubmed/15159678