Medical Marijuana and Chronic Pain: a Review of Basic Science and Clinical Evidence.

“Cannabinoid compounds include phytocannabinoids, endocannabinoids, and synthetics.

The two primary phytocannabinoids are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), with CB1 receptors in the brain and peripheral tissue and CB2 receptors in the immune and hematopoietic systems.

The route of delivery of cannabis is important as the bioavailability and metabolism are very different for smoking versus oral/sublingual routes.

Gold standard clinical trials are limited; however, some studies have thus far shown evidence to support the use of cannabinoids for some cancer, neuropathic, spasticity, acute pain, and chronic pain conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/26325482

Fatty acids, endocannabinoids and inflammation.

“From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system.

However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems.

Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides.

With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation.

A key feature of this ‘expanded’ endocannabinoid system, or ‘endocannabinoidome’, is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities.

Following an update on the role of the ‘endocannabinoidome’ in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners.

Although its pleiotropic character poses scientific challenges, the ‘expanded’ endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases.

In this respect, successes are more likely to come from ‘multiple-target’ than from ‘single-target’ strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/26325095

Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

“Hepatic injury undergoes significant increases in endocannabinoids and infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear…

In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of Bone marrow-derived monocytes/macrophages (BMM) into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis.

In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.”

http://www.ncbi.nlm.nih.gov/pubmed/26320250