Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta.

“Alzheimer’s disease is associated with amyloid-beta (Aβ)-induced microglia activation.

This pro-inflammatory response promotes neuronal damage, and therapies are sought to limit microglial activation.

The objective of this study was to characterize Aβ-induced activation of IMG cells, and here, we demonstrate the ability of cannabinoids to significantly reduce this inflammatory response.

Aβ-induced activation of IMG cells was suppressed by delta-9-tetrahydrocannabinol and the CB2-selective agonist JWH-015 in a time- and concentration-dependent manner.

IMG cells recapitulate key features of microglial cell activation. As an example of their potential pharmacological use, cannabinoids were shown to reduce activation of Aβ-induced iNOS gene expression.”

http://www.ncbi.nlm.nih.gov/pubmed/26819091

Clinical/Therapeutic Approaches for Cannabinoid Ligands in Central and Peripheral Nervous System Diseases: Mini Review.

“Cannabinoids, the components of Cannabis sativa Linnaeus, interact with CB1 and CB2 receptors, which are located both in the central nervous system and in the periphery and thus may exert a widespread biological activity in the body.

The main medicinal properties of cannabinoids include analgesic, anti-inflammatory, antitumor, appetite stimulation, antiemesis, and muscle relaxation effects.

This mini review aims to explore existing clinical trials that investigated the use of cannabinoids in diseases affecting the nervous system.

There is evidence that cannabinoid-based drugs may effectively control some symptoms associated with nervous system dysfunction, especially various types of pain and neurologic disorders, although studies are limited.

The efficacy of cannabinoid drugs in the treatment of nervous system diseases should be verified in future large-scale randomized clinical trials.”

http://www.ncbi.nlm.nih.gov/pubmed/26818043

RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives.

“Regulators of G protein signaling (RGS) proteins provide timely termination of G protein-coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti-inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS proteins. We discuss how the regulation of RGS protein level and activity may modulate immunological pathways involved in the development of intestinal inflammation. Finally, we propose that RGS proteins may serve as a prognostic factor for survival rate in colorectal cancer. The ideas introduced in this review set a novel conceptual framework for the utilization of RGS proteins in the treatment of gastrointestinal inflammation, a growing major concern worldwide.”

http://www.ncbi.nlm.nih.gov/pubmed/26817719

Social defeat leads to changes in the endocannabinoid system; an overexpression of calreticulin and motor impairment in mice.

“Social defeat leads to changes in the endocannabinoid system; an overexpression of calreticulin and motor impairment in mice… the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired… The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice.” http://www.ncbi.nlm.nih.gov/pubmed/26815100

Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

“In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction.

In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization.

Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26811312

http://www.thctotalhealthcare.com/category/addiction/

Molecular Mechanisms of Cannabis Signaling in the Brain.

“Cannabis has been cultivated and used by humans for thousands of years. Research for decades was focused on understanding the mechanisms of an illegal/addictive drug. This led to the discovery of the vast endocannabinoid system.

Research has now shifted to understanding fundamental biological questions related to one of the most widespread signaling systems in both the brain and the body.

Our understanding of cannabinoid signaling has advanced significantly in the last two decades. In this review, we discuss the state of knowledge on mechanisms of Cannabis signaling in the brain and the modulation of key brain neurotransmitter systems involved in both brain reward/addiction and psychiatric disorders.

It is highly probable that various cannabinoids will be found to be efficacious in the treatment of a number of psychiatric disorders.

We are at crossroads for research on endocannabinoid function and therapeutics (including the use of exogenous treatments such as Cannabis).

With over 100 cannabinoid constituents, the majority of which have not been studied, there is much Cannabis research yet to be done. With more states legalizing both the medicinal and recreational use of marijuana the rigorous scientific investigation into cannabinoid signaling is imperative.”

http://www.ncbi.nlm.nih.gov/pubmed/26810000

Granite City Man Claims Cannabis Oil Cured His ‘Incurable’ Cancer

Darren Miller looks over medical records showing he is cancer-free just months after being diagnosed with "incurable, inoperable" cancer. Miller claims the use of cannabis oil completely wiped out the cancer in his system. (KMOX/Brett Blume)

“Darren Miller is ready to enjoy his second chance at life.

The 50-year-old Granite City man is putting out the word that a steady diet of cannabis oil coupled with chemotherapy wiped out what doctors had only months earlier diagnosed as “incurable, inoperable” lung and pericardial heart sac cancer.

He’d basically been given about a year to live, with chemo.

“Glad to be here, glad to be anywhere with the diagnosis I had,” Miller said by way of introduction during a sitdown with KMOX News.

He carried with him a stack of medical documents to back his claim that he’s been given a clean bill of health just months after being handed a death sentence.

“I have the medical records to show the evidence of what I’m saying,” Miller said. “Now it’s going to be interpreted differently by people everywhere, but I’ve researched and there are thousands of testimonies that you can go on the internet and see every day people doing this and it’s been going on for years.””               http://stlouis.cbslocal.com/2016/01/22/granite-city-man-claims-cannabis-oil-killed-his-incurable-cancer/

“Granite City Man Claims Cannabis Oil Killed His “Incurable” Cancer”  http://stlouis.suntimes.com/stl-news/7/139/238717/granite-city-man-claims-cannabis-oil-killed-his-incurable-cancer

http://www.thctotalhealthcare.com/category/cancer/

Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex – possible involvement of 5-HT1A and CB1 receptors.

“Systemic administration of Cannabidiol (CBD), the main non-psychotomimetic constituent of Cannabis sativa, induces antidepressant-like effects.

The mechanism of action of CBD is thought to involve the activation of 5-HT1A receptors and the modulation of endocannabinoid levels with subsequent CB1 activation…

Administration of CBD into the vmPFC induces antidepressant-like effects possibly through indirect activation of CB1 and 5-HT1A receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/26801828

http://www.thctotalhealthcare.com/category/depression-2/

Impact of adolescent marijuana use on intelligence: Results from two longitudinal twin studies.

Logo of pnas

“The purpose of the present study was to examine the associations of marijuana use with changes in intellectual performance in two longitudinal studies of adolescent twins.

There was no evidence of a dose-response relationship between frequency of use and intelligence quotient (IQ) change. Furthermore, marijuana-using twins failed to show significantly greater IQ decline relative to their abstinent siblings.

Evidence from these two samples suggests that observed declines in measured IQ may not be a direct result of marijuana exposure but rather attributable to familial factors that underlie both marijuana initiation and low intellectual attainment.”

“Short-term cannabis use in adolescence does not appear to cause IQ decline or impair executive functions, even when cannabis use reaches the level of dependence. Family background factors explain why adolescent cannabis users perform worse on IQ and executive function tests.”
https://www.ncbi.nlm.nih.gov/pubmed/28734078