The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain.

“There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects.

Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration.

We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels.

Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27326920

The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells.

“Neuroendocrine (NE) differentiation represents a common feature of prostate cancer and is associated with accelerated disease progression and poor clinical outcome. Nowadays, there is no treatment for this aggressive form of prostate cancer.

The aim of this study was to determine the influence of the cannabinoid WIN 55,212-2 (WIN, a non-selective cannabinoid CB1 and CB2 receptor agonist) on the NE differentiation of prostate cancer cells.

Taken together, we demonstrate that PI3K/Akt/AMPK might be an important axis modulating NE differentiation of prostate cancer that is blocked by the cannabinoid WIN, pointing to a therapeutic potential of cannabinoids against NE prostate cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27324222

Susceptibility of Naegleria fowleri to delta 9-tetrahydrocannabinol.

Logo of aac“Growth of the pathogenic amoeboflagellate Naegleria fowleri is inhibited by delta 9-tetrahydrocannabinol (delta 9-THC).

delta 9-THC is amoebostatic at 5 to 50 micrograms/ml. delta 9-THC prevents enflagellation and encystment, but does not impair amoeboid movement. Calf serum at 10 and 20% (vol/vol) reduces the antiamoeba activity of delta 9-THC.

Only 1-methoxy delta 8-tetrahydrocannabinol, of 17 cannabinoids tested, failed to inhibit growth of N. fowleri.

Antinaeglerial activity was not markedly altered by opening the pyran ring, by converting the cyclohexyl ring to an aromatic ring, or by reversing the hydroxyl and pentyl groups on the benzene ring.

delta 9-THC prevented the cytopathic effect of N. fowleri on African green monkey (Vero) cells and human epithelioma (HEp-2) cells in culture. delta 9-THC afforded modest protection to mice infected with N. fowleri.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC352928/

https://aac.asm.org/content/16/5/674?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=ma

“Naegleria fowleri, colloquially known as the “brain-eating amoeba“”  https://en.wikipedia.org/wiki/Naegleria_fowleri

Identification of Psychoactive Degradants of Cannabidiol in Simulated Gastric and Physiological Fluid

“The flowering plants of the genus Cannabis, which mainly comprises the sativa and indica species, have been recognized for medical treatment for millennia.

Although Cannabis contains nearly 500 compounds from 18 chemical classes, its physiological effects derive mainly from a family of naturally occurring compounds known as plant cannabinoids or phytocannabinoids. Of the more than 100 phytocannabinoids that have been identified in Cannabis, among the most important and widely studied are its main psychoactive constituent, Δ9-tetrahydrocannabinol (Δ9-THC), and the most important nonpsychoactive component, cannabidiol (CBD). Other biologically active phytocannabinoids that have been isolated in Cannabis include Δ8-THC, cannabinol, Δ9-tetrahydrocannabivarin, and cannabidivarin.

In recent research, orally administered cannabidiol (CBD) showed a relatively high incidence of somnolence in a pediatric population. Previous work has suggested that when CBD is exposed to an acidic environment, it degrades to Δ9-tetrahydrocannabinol (THC) and other psychoactive cannabinoids. To gain a better understanding of quantitative exposure, we completed an in vitro study by evaluating the formation of psychoactive cannabinoids when CBD is exposed to simulated gastric fluid (SGF).

SGF converts CBD into the psychoactive components Δ9-THC and Δ8-THC. The first-order kinetics observed in this study allowed estimated levels to be calculated and indicated that the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a physiological response. Delivery methods that decrease the potential for formation of psychoactive cannabinoids should be explored.

Despite persistent challenges with dosing and administration, CBD-based therapies have a good safety profile and a potential for efficacy in the treatment of a variety of medical conditions. The rapidly evolving sciences of drug delivery and cannabinoid pharmacology may soon lead to breakthroughs that will improve access to the benefits of this pharmacological class of agents. In addition, current technologies, such as transdermal-based therapy, may be able to eliminate the potential for psychotropic effects due to this acid-catalyzed cyclization by delivering CBD through the skin and into the neutral, nonreactive environment of the systemic circulation.”

http://online.liebertpub.com/doi/10.1089/can.2015.0004

Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy

Logo of nihpa

“Severe childhood epilepsies are characterized by frequent seizures, neurodevelopmental delays and impaired quality of life. In these treatment-resistant epilepsies, families often seek alternative treatments.

This survey explored the use of cannabidiol-enriched cannabis in children with treatment-resistant epilepsy. The survey was presented to parents belonging to a Facebook group dedicated to sharing information about the use of cannabidiol-enriched cannabis to treat their child’s seizures.

Nineteen responses met the inclusion criteria for the study: a diagnosis of epilepsy and current use of cannabidiol-enriched cannabis. Thirteen children had Dravet syndrome, four had Doose syndrome, and one each had Lennox-Gastaut syndrome and idiopathic epilepsy.

The average number of anti-epileptic drugs (AEDs) tried before using cannabidiol-enriched cannabis was 12. Sixteen (84%) of the 19 parents reported a reduction in their child’s seizure frequency while taking cannabidiol-enriched cannabis. Of these, two (11%) reported complete seizure freedom, eight (42%) reported a greater than 80% reduction in seizure frequency, and six (32%) reported a 25-60% seizure reduction.

Other beneficial effects included increased alertness, better mood and improved sleep. Side effects included drowsiness and fatigue.

Our survey shows that parents are using cannabidiol-enriched cannabis as a treatment for children with treatment-resistant epilepsy. Because of the increasing number of states that allow access to medical cannabis, its use will likely be a growing concern for the epilepsy community. Safety and tolerability data for cannabidiol-enriched cannabis use among children is not available. Objective measurements of a standardized preparation of pure cannabidiol are needed to determine whether it is safe, well tolerated and efficacious at controlling seizures in this difficult-to-treat pediatric population.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157067/

Cannabidiol monotherapy for treatment-resistant schizophrenia

SJO banner

“Cannabidiol (CBD), one of the major products of the marijuana plant, is devoid of marijuana’s typical psychological effects. In contrast, potential antipsychotic efficacy has been suggested based on preclinical and clinical data.

In this report, we further investigated the efficacy and safety of CBD monotherapy in three patients with treatment-resistant schizophrenia (TRS).

Efficacy, tolerability and side effects were assessed.

All patients tolerated CBD very well and no side effects were reported.

These preliminary data suggest that CBD monotherapy may not be effective for TRS.”

http://jop.sagepub.com/content/20/5/683.short

Hypothermia induced by delta9-tetrahydrocannabinol in rats with electrolytic lesions of preoptic region.

“The preoptic region (POR) is a primary central site for thermoregulation. Bilateral lesions of POR disrupt thermoregulation, and in rats, produce a characteristic syndrome including hyperthermia.

delta9-Tetrahydrocannabinol (delta9-THC), a potent hypothermic agent, appears to mediate this effect via some central mechanism. The studies reported here suggest that delta9-THC induces hypothermia at a site other than POR.

These data demonstrate that delta9-THC is able to induce a hypothermic response in rats whose body temperatures were elevated by POR ablation. Although delta9-THC does not appear to act primarily at POR to induce hypothermia, it is evident than an intact POR plays a role in modifying the duration and magnitude of delta9-THC induced hypothermia.”

http://www.ncbi.nlm.nih.gov/pubmed/996043

Pharmacological hypothermia: a potential for future stroke therapy?

“Mild physical hypothermia after stroke has been associated with positive outcomes.

Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models.

Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives.

This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.”

http://www.ncbi.nlm.nih.gov/pubmed/27320243

No Link Between Marijuana Use and Stroke Risk

Medpage Today

“There was no evidence that marijuana use was associated with an increased risk of ischemic stroke in adolescents and young adults, a researcher said here.

“Our data did not support” a link between the drug and stroke risk”

http://www.medpagetoday.com/meetingcoverage/aan/45577

“Cannabinoids in experimental stroke: a systematic review and meta-analysis. Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. Cannabinoids reduced infarct volume in transient and permanent ischemia and in all subclasses: endocannabinoids, CB1/CB2 ligands, CB2 ligands, cannabidiol, Δ9-tetrahydrocannabinol, and HU-211. Overall, CBs significantly reduced infarct volume and improve functional outcome in experimental stroke.” http://www.ncbi.nlm.nih.gov/pubmed/25492113

http://www.thctotalhealthcare.com/category/stroke-2/

Pot a Common Remedy to Ease Back Pain

“Use of marijuana to ease back pain was common among patients at a university spine clinic in Colorado where pot has been legal for medical purposes since 2000, but most of the users did not have a prescription, according to research presented here.

Among 184 patients at a Colorado spine center, 19% said they used marijuana for pain relief, but less than half, 46%, actually had a prescription for the drug, according to study co-author Michael Finn, MD, an assistant professor of neurosurgery at the University of Colorado in Denver.

The most common way to use the drug was smoking it, 90%, followed by oral ingestion, 45%, and vaporization, 29%.

According to the users, marijuana worked. A total of 89% said it greatly or moderately relived their pain, and 81% said it worked as well as or better than narcotic painkillers.”

http://www.medpagetoday.com/MeetingCoverage/AdditionalMeetings/42228