Anticancer and antioxidant properties of terpinolene in rat brain cells.

“Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species.

Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.” http://www.ncbi.nlm.nih.gov/pubmed/24084350

“Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol. The major components in Bedrocan smoke were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.”  http://www.ncbi.nlm.nih.gov/pubmed/20118579

“The sedative effect of inhaled terpinolene in mice and its structure-activity relationships.” http://www.ncbi.nlm.nih.gov/pubmed/23339024

 “Anticancer and antioxidant properties of terpinolene in rat brain cells.”  http://www.ncbi.nlm.nih.gov/pubmed/24084350

Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor.

cpb

“Cannabis sativa L. (cannabis) extracts, vapor produced by the Volcano vaporizer and smoke made from burning cannabis joints were analyzed by GC-flame ionization detecter (FID), GC-MS and HPLC. Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol.

Cannabinoids plus other components such as terpenoids and pyrolytic by-products were identified and quantified in all samples. Cannabis vapor and smoke was tested for cannabinoid receptor 1 (CB1) binding activity and compared to pure Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

The top five major compounds in Bedrocan extracts were Delta(9)-THC, cannabigerol (CBG), terpinolene, myrcene, and cis-ocimene in Bedrobinol Delta(9)-THC, myrcene, CBG, cannabichromene (CBC), and camphene in Bediol cannabidiol (CBD), Delta(9)-THC, myrcene, CBC, and CBG.

The major components in Bedrocan vapor (>1.0 mg/g) were Delta(9)-THC, terpinolene, myrcene, CBG, cis-ocimene and CBD in Bedrobinol Delta(9)-THC, myrcene and CBD in Bediol CBD, Delta(9)-THC, myrcene, CBC and terpinolene.

The major components in Bedrocan smoke (>1.0 mg/g) were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.

There was no statistically significant difference between CB1 binding of pure Delta(9)-THC compared to cannabis smoke and vapor at an equivalent concentration of Delta(9)-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/20118579

Fibromyalgia Research Might Benefit from Finding Cannabinoid Receptors in Muscles

Fibromyalgia News Today

“Receptors for the body’s own cannabinoid substances are present in muscle fascia — soft connective tissue surrounding all muscles and involved in several pain states, according to recent research from the University of Padua in Italy.

In addition to casting light on disease processes in fibromyalgia, the findings might lead to better approaches for managing pain and inflammation in the disease, for which current treatments often fail to adequately treat symptoms.

Endocannabinoids are bodily substances chemically resembling the cannabinoid molecules in cannabis. The factors send signals through two receptors that scientists have primarily explored in the brain and in immune cells, and studies show that stimulating the receptors can relieve pain and suppress inflammation.

 Patients with pain conditions such as fibromyalgia often turn to cannabis when prescription drugs are not enough to manage their symptoms. A 2005 study from the United Kingdom listed fibromyalgia among those conditions where patients frequently turn to marijuana for symptom relief, and a 2014 study of 217 U.S. patients showed that pain was the most commonly reported ailment in patients who use medical cannabis.

Research has also demonstrated that patients with fibromyalgia report that marijuana use lowers pain and improves health-related quality of life, making researchers suspect that endocannabinoid receptors, which also mediate the effects of marijuana, might exist in tissues other than the brain and immune cells.

To explore this, the study, “Expression of the endocannabinoid receptors in human fascial tissue,“ published in the European Journal of Histochemistryturned to muscle fascia, a tissue that has also been linked to other muscle pain conditions.

Extracting the tissue from thigh muscles of 11 volunteers who had orthopedic surgery, researchers isolated the main cell type of the fascia, called fibroblasts. They found both types of receptors, called CB1 and CB2, in the cells. Examining whole tissue levels of the two receptors, researchers noted somewhat higher levels, indicating that the receptors may also be present in other cell types.

A better understanding of how endocannabinoid receptors are involved in fibromyalgia might lead to treatments specifically targeting the receptors in the muscles, avoiding the effects of manipulating cannabinoid receptors in the brain which mediate the psychotropic actions of cannabis.”

https://fibromyalgianewstoday.com/2016/07/08/fibromyalgia-drug-research-might-benefit-from-finding-cannabinoid-receptors-in-muscles/

Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation.

“Increasing evidence has demonstrated the role of endogenous cannabinoids system (ECS) on protecting brain injury caused by ischemia (IMI). Papers reported that microglia-mediated inflammation has become one of the most pivotal mechanisms for IMI. This study was aimed to investigate the potential roles of ECS on neuron protection under microglia-mediated inflammation. Inflammatory cytokines level both in vitro (BV-2 cells) and in vivo (brain tissue from constructed IMI model and brain-isolated microglia) was detected. ECS levels were detected, and its effects on inflammations was also analyzed. Influence of microglia-mediated inflammation on neuron injury was analyzed. Moreover, the effects of ECS on protecting neuron injury were also analyzed. Our results showed that the levels of inflammatory cytokines including TNFα and IL-1β were higher while IKBα was lower in IMI model brain tissue, brain-isolated microglia and BV-2 cells compared to the control. Inflammation was activated in microglia, as well as the activation of ECS characterized by the increasing level of AEA and 2-AG. Furthermore, the activated microglia-mediated self-inflammation performed harmful influence on neurons via suppressing cell viability and inducing apoptosis. Moreover, ECS functioned as a protector on neuron injury though promoting cell proliferation and suppressing cell apoptosis which were caused by the activated BV-2 cells (LPS induced for 3 h). Our data suggested that ECS may play certain neuroprotective effects on microglia-mediated inflammations-induced IMI through anti-inflammatory function.”

http://www.ncbi.nlm.nih.gov/pubmed/27398146

The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

“The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles.”

http://www.ncbi.nlm.nih.gov/pubmed/27398024

Inhibition of the cataleptic effect of tetrahydrocannabinol by other constituents of Cannabis sativa L.

“Tetrahydrocannabinol (THC) induced catalepsy in mice, whereas a cannabis oil (6.68% w/w THC), four cannabinoids and a synthetic mixture did not. Cannabinol (CBN) and olivetol inhibited THC-induced catalepsy in the mornings and the evenings, but cannabidiol (CBD) exhibited this effect only in the evenings. A combination of CBN and CBD inhibited THC-induced catalepsy equal to that of CBN alone in the mornings, but this inhibition was greater than that produced by CBN alone in the evenings.”  http://www.ncbi.nlm.nih.gov/pubmed/2897447

Cannflavin A and B, prenylated flavones from Cannabis sativa L.

“Two novel prenylated flavones, termed Cannflavin A and B, were isolated from the cannabinoid free ethanolic extract of Cannabis sativa L. Both compounds inhibited prostaglandin E2 production by human rheumatoid synovial cells in culture.”

http://www.ncbi.nlm.nih.gov/pubmed/3754224

Isolation from Cannabis sativa L. of cannflavin–a novel inhibitor of prostaglandin production.

“The isolation from Cannabis sativa L. of an inhibitor of prostaglandin (PG) E2 production by cultured rheumatoid synovial cells is described. This agent, for which the name Cannflavin has been coined, is distinct from cannabinoids on the basis of isolation procedure, preliminary structural analysis and biological properties. The activity of Cannflavin has been compared with several established anti-inflammatory drugs and the major cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/3859295

Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase

Cover image

“Hemp seeds are of great nutritional value, containing all essential amino acids and fatty acids in sufficient amount and ratio to meet the dietary human demand.

Hemp seeds do not contain cannabinoids, and because of their high contents of ω-3 fatty acids, are enjoying a growing popularity as a super-food to beneficially affect chronic inflammation.

Seeds also lack the typical phenolics of hemp leaves and inflorescences, but we found that sprouting, while not triggering the production of cannabinoids, could nevertheless induce the production of the anti-inflammatory prenylflavonoids cannflavins A and B.

This effect was especially marked in Ermo, a cannabinoid-free variety of Cannabis sativa L. Microsomal prostaglandin E2 synthase (mPGES-1) and 5-lipoxygenase (5-LO) were identified as the molecular targets of cannflavins A and B, solving an almost three-decade old uncertainty on the mechanism of their the anti-inflammatory activity.

No change on the fatty acid profile was observed during sprouting, and the presence of lipophilic flavonoids combines with the high concentration of ω-3 essential acids to qualify sprouts from Ermo as a novel anti-inflammatory hemp food product worth considering for mass production and commercial development.”

http://www.sciencedirect.com/science/article/pii/S2213434414000176

Agitation in Alzheimer Disease as a Qualifying Condition for Medical Marijuana in the United States.

“Of the 24 states and localities where medical marijuana is legal, dementia is a qualifying condition in 10 (41.7%), primarily for agitation of Alzheimer disease.

Dementia is somewhat commonly listed as a potential qualifying condition for medical marijuana.

Currently, few applicants for medical marijuana list dementia as the reason for seeking certification. However, given increasingly open attitudes toward recreational and medical marijuana use, providers should be aware that dementia is a potential indication for licensing, despite lack of evidence for its efficacy.”

http://www.ncbi.nlm.nih.gov/pubmed/27389672