Cannabinoid signalling in glioma cells

SpringerPlus Cover Image

“Cannabinoids, originally derived from Cannabis sativa, as well as their endogenous and synthetic counterparts, were shown to induce apoptosis of glioma cells in vitro and tumour regression in vivo via their specific receptors, cannabinoid receptors CB1 and/or CB2.

CB2 are abnormally expressed in human gliomas and glioma cell lines. Most of the analysed gliomas expressed significant levels of CB2 receptor and the extent of CB2 expression in the tumour specimens was related to tumour malignancy.

A synthetic cannabinoid, WIN 55,212-2, down-regulated the Akt and Erk signalling pathways in C6 glioma cells that resulted in reduction of phosphorylated Bad levels, mitochondrial depolarization and activation of caspase cascade leading to apoptosis.

We examined whether synthetic cannabinoids with different receptor specificity: WIN55,212-2 (a non-selective CB1/CB2 agonist) and JWH133 (a CB2-selective agonist) affect survival of four human glioma cell lines and three primary human glioma cell lines.

WIN-55,212-2 decreased cell viability in all examined cell lines and induced cell death. Susceptibility of the cells to JWH133 treatment correlated with the CB2 expression. Cannabinoids triggered a decrease of mitochondrial membrane potential, cleavage of caspase-9 and effector caspases.

Induction of cell death by cannabinoid treatment led to the generation of a pro-apoptotic sphingolipid ceramide and disruption of signalling pathways crucial for regulation of proliferation and survival. Increased ceramide levels induced ER-stress and autophagy in drug-treated glioblastoma cells.

We conclude that cannabinoids are efficient inhibitors of human glioma cells growth, once the cells express specific type of cannabinoid receptor.”

http://springerplus.springeropen.com/articles/10.1186/2193-1801-4-S1-L11

Medical Marijuana Laws Reduce Prescription Medication Use In Medicare Part D.

Health Affairs

“Legalization of medical marijuana has been one of the most controversial areas of state policy change over the past twenty years. However, little is known about whether medical marijuana is being used clinically to any significant degree. Using data on all prescriptions filled by Medicare Part D enrollees from 2010 to 2013, we found that the use of prescription drugs for which marijuana could serve as a clinical alternative fell significantly, once a medical marijuana law was implemented. National overall reductions in Medicare program and enrollee spending when states implemented medical marijuana laws were estimated to be $165.2 million per year in 2013. The availability of medical marijuana has a significant effect on prescribing patterns and spending in Medicare Part D.”  http://www.ncbi.nlm.nih.gov/pubmed/27385238

“Medical Marijuana Laws Reduce Prescription Medication Use In Medicare Part D” https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2015.1661 

Does cannabidiol have a role in the treatment of schizophrenia?

“Schizophrenia is a debilitating psychiatric disorder which places a significant emotional and economic strain on the individual and society-at-large. Unfortunately, currently available therapeutic strategies do not provide adequate relief and some patients are treatment-resistant.

In this regard, cannabidiol (CBD), a non-psychoactive constituent of Cannabis sativa, has shown significant promise as a potential antipsychotic for the treatment of schizophrenia.

However, there is still considerable uncertainty about the mechanism of action of CBD as well as the brain regions which are thought to mediate its putative antipsychotic effects. We argue that further research on CBD is required to fast-track its progress to the clinic and in doing so, we may generate novel insights into the neurobiology of schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/27374322

The endocannabinoid system – a target for the treatment of LUTS?

“Lower urinary tract symptoms (LUTS) are common in all age groups and both sexes, resulting in tremendous personal suffering and a substantial burden to society.

Antimuscarinic drugs are the mainstay of symptom management in patients with LUTS, although their clinical utility is limited by the high prevalence of adverse effects, which often limit patients’ long-term adherence to these agents.

Data from controversial studies in the 1990s revealed the positive effects of marijuana-based compounds on LUTS, and sparked an interest in the possibility of treating bladder disorders with cannabis.

Increased understanding of cannabinoid receptor pharmacology and the discovery of endogenous ligands of these receptors has prompted debate and further research into the clinical utility of exogenous cannabinoid receptor agonists relative to the unwanted psychotropic effects of these agents.

Currently, the endocannabinoid system is considered as a potential drug target for pharmacological management of LUTS, with a more favourable adverse event profile than antimuscarinic agents.”

http://www.ncbi.nlm.nih.gov/pubmed/27377161

The cannabinoid 2 receptor agonist β-caryophyllene modulates the inflammatory reaction induced by Mycobacterium bovis BCG by inhibiting neutrophil migration.

“β-Caryophyllene (BCP) is a sesquiterpene that binds to the cannabinoid 2 (CB2) receptor and exerts anti-inflammatory effects. In this study, we investigated the anti-inflammatory effect of BCP and another CB2 agonist, GP1a in inflammatory experimental model induced by Mycobacterium bovis (BCG).

These results suggest that the CB2 receptor may represent a new target for modulating the inflammatory reaction induced by mycobacteria.”

http://www.ncbi.nlm.nih.gov/pubmed/27379721

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Microglia activation states and cannabinoid system: Therapeutic implications.

“Microglial cells are recognized as the brain’s intrinsic immune cells, mediating actions that range from the protection against harmful conditions that modify CNS homeostasis, to the control of proliferation and differentiation of neurons and their synaptic pruning. To perform these functions, microglia adopts different activation states, the so-called phenotypes that depending on the local environment involve them in neuroinflammation, tissue repair and even the resolution of the inflammatory process.

There is accumulating evidence indicating that cannabinoids (CBs) might serve as a promising tool to modify the outcome of inflammation, especially by influencing microglial activity.

Microglia has a functional endocannabinoid (eCB) signaling system, composed of cannabinoid receptors and the complete machinery for the synthesis and degradation of eCBs.

The expression of cannabinoid receptors – mainly CB2 – and the production of eCBs have been related to the activation profile of these cells and therefore, the microglial phenotype, emerging as one of the mechanisms by which microglia becomes alternatively activated.

Here, we will discuss recent studies that provide new insights into the role of CBs and their endogenous counterparts in defining the profile of microglia activation.

These actions make CBs a promising therapeutic tool to avoid the detrimental effects of inflammation and possibly paving the way to target microglia in order to generate a reparative milieu in neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27373505

The bright side of psychoactive substances: cannabinoid-based drugs in motor diseases.

“Psychoactive substances are associated with the idea of drugs with high addictive liability, affecting mental states, cognition, emotion and motor behavior. However these substances can modify synaptic transmission and help to disclose some mechanisms underlying alterations in brain processing and pathophysiology of motor disease. Hence, the “bright side” of cannabinoid-based drugs must be thoroughly examined to be identified within the latter framework.

We will analyze the preclinical and clinical evidence of cannabinoid-based drugs, discussing their therapeutic value in basal ganglia motor disorders such as Parkinson’s disease and Huntington disease.

Expert commentary: despite the knowledge acquired in the last years, the therapeutic potential of cannabinoid-based drugs should be further tested by novel routes of investigation. This should be focused on the role of cannabinoid signaling system in mitochondrial function as well as on the physical and functional interaction with other key receptorial targets belonging to this network.”

http://www.ncbi.nlm.nih.gov/pubmed/27373318

Researcher explores effects of cannabinoids on blood pressure

Andrei Derbenev, associate professor of physiology, Tulane School of Medicine

“Hypertension — or high blood pressure — is a long-term, high-risk condition for millions of people worldwide.

At the moment, synthetic beta-blockers are one of the most common drugs prescribed to treat hypertension.

But what if a natural drug, marijuana, which has been known for 5,000 years, could be used in the treatment of high blood pressure?

Andrei Derbenev, associate professor of physiology in the Tulane University School of Medicine, recently received a four-year, $1.5 million research grant from the National Institutes of Health to study how cannabinoids — the compounds of cannabis (another name for marijuana) — affect a brain stem area involved in blood pressure control.

His research may have important clinical applications for the treatment of hypertension.

He is identifying the cells in the sympathetic nervous system linked to the kidneys, a key organ in hypertension. (The sympathetic nervous system is the part of the autonomic nervous system that stimulates the body’s “fight or flight” response. Overactivity of the sympathetic nervous system is a cause of high blood pressure.)

He and his research team are studying the effect of exogenous cannabinoids — from the marijuana plant — and endogenous cannabinoids —those naturally produced within the body.

Cannabis “has lots of different chemicals inside. Some of them are painkillers. Some of them, we don’t know what they are doing.”

People ask Derbenev all the time: Is marijuana good? Is it bad? But the debate, he says, should be, instead, “Which works? Which does not work?”

About a decade ago, Derbenev led a study about the effect of cannabinoids on the parasympathetic nervous system, the part of the autonomic nervous system that stimulates the body to “rest and digest.” In that investigation, his team showed the mechanism by which cannabis can reduce digestive spasms and thus decrease vomiting. It’s a finding of great interest to cancer patients experiencing nausea while undergoing chemotherapy.”

https://news.tulane.edu/news/researcher-explores-effects-cannabinoids-blood-pressure

Medical Marijuana for Epilepsy?

“Treatment-refractory epilepsy remains an important clinical problem. There is considerable recent interest by the public and physicians in using medical marijuana or its derivatives to treat seizures. The endocannabinoid system has a role in neuronal balance and ictal control. There is clinical evidence of success in diminishing seizure frequencies with cannabis derivatives, but also documentation about exacerbating epilepsy or of no discernible effect. There are lay indications and anecdotal reports of success in attenuating the severity of epilepsy, but without solid investigational corroboration. Marijuana remains largely illegal, and may induce adverse consequences. Clinical applications are not approved, thus are restricted and only recommended in selected treatment unresponsive cases, with appropriate monitoring.”

http://www.ncbi.nlm.nih.gov/pubmed/27354925

Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis.

Related image

“Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson’s disease (PD). The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use.

The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress.

We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content.

… unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress.

We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27366949

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=10314&path[]=32486