In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy.

“Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells.

In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer.

Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines.

In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles.

These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.”

http://www.ncbi.nlm.nih.gov/pubmed/25899283

Immunoactive cannabinoids: Therapeutic prospects for marijuana constituents

“Marijuana, the common name for Cannabis sativa, is a widely distributed hemp plant whose dried flowering tops and leaves have been used for medicinal purposes for 12,000 years by some estimates.

The article by Malfaitet al. in this issue of PNAS is relevant to the question of whether such traditional uses of marijuana could be clinically justifiable today.

It is conceivable that marijuana contains a series of cannabinoids that, in the aggregate, could alleviate arthritis as implied in the present report, yet remain well tolerated.

Remarkably, the claim that marijuana does so also was made 4,000 years ago by the Chinese emperor Shen-nung whose pharmacobotanical compendium, the Pen-ts’ao Ching, concluded that cannabis “undoes rheumatism””

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC34030/

Characterization of delta9-tetrahydrocannabinol and anandamide antinociception in nonarthritic and arthritic rats.

“The hypothesis was tested that THC and anandamide elicit antinociception in the paw pressure test, and that arthritic rats would exhibit a different response.

THC and anandamide appear to release an as yet unknown endogenous opioid, because naloxone significantly blocked their effects.

This study indicates that anandamide and THC may act at different receptor sites to modulate endogenous opioid levels in mechanical nociception.”

http://www.ncbi.nlm.nih.gov/pubmed/9610941

Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage.

“Cannabinoids have been reported to have anti-inflammatory effects and reduce joint damage in animal models of arthritis.

This suggests a potential therapeutic role in arthritis of this group of compounds.

Cannabinoids were studied to determine whether they have direct effects on chondrocyte metabolism resulting in cartilage protection.

Synthetic cannabinoids, R-(+)-Win-55,212 (Win-2) and S-(-)-Win-55,212 (Win-3) and the endocannabinoid, anandamide, were investigated on unstimulated or IL-1-stimulated nitric oxide (NO) production in bovine articular chondrocytes as well as on cartilage proteoglycan breakdown in bovine nasal cartilage explants.

Win-2 significantly inhibited (P < 0.05) NO production in chondrocytes at 1-10 microM concentrations. The combined CB(1) and CB(2) cannabinoid receptor antagonists, AM281 and AM630, respectively, at 100 microM did not block this effect, but instead they potentiated it. Anandamide and Win-2 (5-50 microM) also inhibited the release of sulphated glycosaminoglycans in bovine cartilage explants.

The results suggest that some cannabinoids may prevent cartilage resorption, in part, by inhibiting cytokine-induced NO production by chondrocytes and also by inhibiting proteoglycan degradation.”

http://www.ncbi.nlm.nih.gov/pubmed/15670582

Arthritis and cannabinoids: HU-210 and Win-55,212-2 prevent IL-1alpha-induced matrix degradation in bovine articular chondrocytes in-vitro.

 

“Cannabinoids have analgesic, immunomodulatory and anti-inflammatory properties and attenuate joint damage in animal models of arthritis.

Chondrocytes appeared to constitutively express cannabinoid receptors CB1 and CB2.

It is concluded that biologically stable synthetic cannabinoids protect cartilage matrix from degradation induced by cytokines and this effect is possibly CB-receptor mediated and involves effects on prostaglandin and nitric oxide metabolism.”

http://www.ncbi.nlm.nih.gov/pubmed/16536902

Cannabinoids: novel therapies for arthritis?

“A key feature of osteoarthritis and rheumatoid arthritis is the loss of articular cartilage.

Cartilage breakdown is mediated by complex interactions of proinflammatory cytokines, such as IL-1, inflammatory mediators, including nitric oxide and prostaglandin E(2), and proteases, including matrix metalloproteinases and aggrecanases, such as ADAMTS-4 and -5.

Cannabinoids have been shown to reduce joint damage in animal models of arthritis.

They have also been shown to prevent IL-1-induced matrix breakdown of collagen and proteoglycan, indicating that cannabinoids may mediate chondroprotective effects.

Cannabinoids produce their effects via several cannabinoid receptors and it is important to identify the key cannabinoids and their receptors that are involved in chondroprotection.

This review aims to outline the current and future prospects of cannabinoids as anti-arthritic therapeutics, in terms of their ability to prevent cartilage breakdown.”

http://www.ncbi.nlm.nih.gov/pubmed/22530636