Effect of cannabis smoking on lung function and respiratory symptoms: a structured literature review.

Image result for NPJ Prim Care Respir Med.

“As cannabis use increases, physicians need to be familiar with the effects of both cannabis and tobacco on the lungs. However, there have been very few long-term studies of cannabis smoking, mostly due to legality issues and the confounding effects of tobacco.

It was previously thought that cannabis and tobacco had similar long-term effects as both cause chronic bronchitis. However, recent large studies have shown that, instead of reducing forced expiratory volume in 1 s and forced vital capacity (FVC), marijuana smoking is associated with increased FVC.

The cause of this is unclear, but acute bronchodilator and anti-inflammatory effects of cannabis may be relevant.”

https://www.ncbi.nlm.nih.gov/pubmed/27763599

Cannabinoid Receptor 2 Activation Restricts Fibrosis and Alleviates Hydrocephalus after Intraventricular Hemorrhage.

Image result for brain research journal

“Fibrosis in ventricular system has a role in hydrocephalus following intraventricular hemorrhage (IVH).

The cannabinoid receptor 2 (CB2) has been reported to participate in alleviating the fibrosis process of many diseases.

However, its role in fibrosis after IVH was unclear so far, and we hypothesized that CB2 activation has potential to attenuate hydrocephalus after IVH via restricting fibrosis. So the present study was designed to investigate this hypothesis in a modified rat IVH model.

In conclusion, CB2 may have anti-fibrogenic effects after IVH. CB2 agonist suppressed fibrosis of ventricular system and alleviated hydrocephalus following IVH, which is partly mediated by inhibiting TGF-β1.”

https://www.ncbi.nlm.nih.gov/pubmed/27769788

Targeting cannabinoid receptor-2 pathway by phenylacetylamide suppresses the proliferation of human myeloma cells through mitotic dysregulation and cytoskeleton disruption.

Image result for molecular carcinogenesis journal

“Cannabinoid receptor-2 (CB2) is expressed dominantly in the immune system, especially on plasma cells.

Cannabinergic ligands with CB2 selectivity emerge as a class of promising agents to treat CB2-expressing malignancies without psychotropic concerns.

In this study, we found that CB2 but not CB1 was highly expressed in human multiple myeloma (MM) and primary CD138+ cells.

Thus, targeting CB2 may represent an attractive approach to treat cancers of immune origin.”

https://www.ncbi.nlm.nih.gov/pubmed/25640641

The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2.

Image result for Int J Cancer

“Multiple myeloma (MM) is a plasma cell (PC) malignancy characterised by the accumulation of a monoclonal PC population in the bone marrow (BM).

Cannabidiol (CBD) is a non-psychoactive cannabinoid with antitumoural activities, and the transient receptor potential vanilloid type-2 (TRPV2) channel has been reported as a potential CBD receptor.

TRPV2 activation by CBD decreases proliferation and increases susceptibility to drug-induced cell death in human cancer cells.

However, no functional role has been ascribed to CBD and TRPV2 in MM. In this study, we identified the presence of heterogeneous CD138+TRPV2+ and CD138+TRPV2- PC populations in MM patients, whereas only the CD138+ TRPV2- population was present in RPMI8226 and U266 MM cell lines.

Because bortezomib (BORT) is commonly used in MM treatment, we investigated the effects of CBD and BORT in CD138+TRPV2- MM cells and in MM cell lines transfected with TRPV2 (CD138+TRPV2+).

These results showed that CBD by itself or in synergy with BORT strongly inhibited growth, arrested cell cycle progression and induced MM cells death by regulating the ERK, AKT and NF-κB pathways with major effects in TRPV2+ cells.

These data provide a rationale for using CBD to increase the activity of proteasome inhibitors in MM.”

https://www.ncbi.nlm.nih.gov/pubmed/24293211

Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.

Image result for Oncotarget

“Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration.

Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death.

In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy.

In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines.

We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis.

Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein.

Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ.

Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration.

In summary, these results proved that this combination exerts strong anti-myeloma activities.”

Crystal Structure of the Human Cannabinoid Receptor CB1.

Image result for cell journal

“Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use.

CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders.

Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study.

The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding.

In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids.

This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.”

https://www.ncbi.nlm.nih.gov/pubmed/27768894

Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors.

Image result for J Med Chem

“Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anti-cancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2), or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation.

FAEs and ECs are synthesized by a series of endogenous enzymes, including N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), or phospholipase C (PLC), and their metabolism is mediated by several metabolic enzymes, including fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), N-acylethanolamine acid amidase (NAAA), or cyclooxygenase-2 (COX-2).

Over the last decades, increasing the concentration of FAEs and ECs through the inhibition of degrading enzymes has been considered to be a viable therapeutic approach to enhance their anti-nociceptive and anti-inflammatory effects, as well as protecting the nervous system.”

Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: A neuroprotective mechanism.

Image result for glia journal

“The mechanisms involved in Alzheimer’s disease are not completely understood and how astrocytes and their gliotransmission contribute to this neurodegenerative disease remains to be fully elucidated.

Previous studies have shown that amyloid-β peptide (Aβ) induces neuronal death by a mechanism that involves the excitotoxic release of ATP and glutamate associated to astroglial hemichannel opening.

We have demonstrated that synthetic and endogenous cannabinoids (CBs) reduce the opening of astrocyte Cx43 hemichannels evoked by activated microglia or inflammatory mediators.

Nevertheless, whether CBs could prevent the astroglial hemichannel-dependent death of neurons evoked by Aβ is unknown.

We report that CBs fully prevented the hemichannel activity and inflammatory profile evoked by Aβ in astrocytes.

Moreover, CBs fully abolished the Aβ-induced release of excitotoxic glutamate and ATP associated to astrocyte Cx43 hemichannel activity, as well as neuronal damage in hippocampal slices exposed to Aβ.

Consequently, this work opens novel avenues for alternative treatments that target astrocytes to maintain neuronal function and survival during AD.”

https://www.ncbi.nlm.nih.gov/pubmed/27757991

Overexpression of cannabinoid receptor 1 promotes renal cell carcinoma progression.

Image result for Tumour Biol.

“Renal cell carcinoma (RCC) is a common urologic tumor with a poor prognosis.

Cannabinoid receptor 1 (CB1), which is a G protein-coupled receptor, has recently been reported to participate in the genesis and development of various cancers.

However, the exact role of CB1 in RCC is unknown. The aim of this study was to determine the role of CB1 in RCC cell lines and RCC prognosis, thus underlying its potential as a therapeutic target.

CB1 expression is functionally associated to cellular proliferation, apoptosis, and invasion ability of RCC.

Our data suggest that CB1 might be a potential target for RCC clinical therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/27757850

An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse.

Image result for Front Pharmacol.

“Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients.

Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for “CBD botanical drug substance,” on mucosal inflammation and hypermotility in mouse models of intestinal inflammation.

In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation.

These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.”