ENDOCANNABINOIDS AND SLEEP.

Image result for Neuroscience & Biobehavioral Reviews

“Sleep is regulated by several brain structures, neurotransmitters and neuromodulators.

Endocannabinoids (eCBs) are a group of lipids with modulatory activity in the brain and bind mainly to cannabinoid receptors CB1R and CB2R, thereby modulating several brain functions, (memory, mood, food intake, pain perception).

Oleoylethanolamide and palmitoylethanolamide belong to the N-acylethanolamides (NAEs) family, another type of active endogenous lipids. They bind to the peroxisome proliferator-activated receptor α but not to CB1R, thereby modulating food satiety, inflammation and pain.

Both eCBs and NAEs seem to be regulating the sleep-wake cycle.

Our objective is to analyze the experimental evidence published in the literature and to discuss if eCBs and NAEs are actually sleep modulators.

Studies suggested 1. eCBs and NAEs are under circadian control. 2. NAEs promote wake. 3. eCBs promote non-rapid-eye movement. 4. eCBs also promote rapid-eye-movement sleep by interacting with melanin-concentrating hormone neurons in the lateral hypothalamus. 5. The pharmacological blockade of the CB1R reduces sleep while increasing wake. 6. eCBs restore sleep in a model of insomnia in rats.”

https://www.ncbi.nlm.nih.gov/pubmed/27756691

Effects of Marijuana on ictal and interictal EEG activity in idiopathic generalized epilepsy.

Image result for J Clin Neurophysiol.

“Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series and clinical trials.

However, literature on their electroencephalography (EEG) effects is sparse.

Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy (IGE) treated with cannabis.

Using a novel approach to electroencephalographic data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use.

Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing are needed to validate our findings.”

Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist.

Image result for Front Neurosci.

“We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits.

We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189.

Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state.

CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.”

Structure of primary cannabinoid receptor is revealed

“Findings give insight into designing safe and effective cannabinoid medications.”

Illustration of the CB1 receptor.

“New research is providing a more detailed view into the structure of the human cannabinoid (CB1) receptor. These findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol (THC)—a primary chemical in marijuana—bind at the CB1 receptor to produce their effects. The research was funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health.”

https://www.nih.gov/news-events/news-releases/structure-primary-cannabinoid-receptor-revealed

“‘Marijuana receptor’ uncovered in new study”  http://www.medicalnewstoday.com/articles/313564.php

Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose.

Image result for Transl Psychiatry.

“Although all current antipsychotics act by interfering with the action of dopamine at dopamine D2 receptors, two recent reports showed that 800 to 1000 mg of cannabidiol per day alleviated the signs and symptoms of schizophrenia, although cannabidiol is not known to act on dopamine receptors. Because these recent clinical findings may indicate an important exception to the general rule that all antipsychotics interfere with dopamine at dopamine D2 receptors, the present study examined whether cannabidiol acted directly on D2 receptors, using tritiated domperidone to label rat brain striatal D2 receptors. It was found that cannabidiol inhibited the binding of radio-domperidone with dissociation constants of 11 nm at dopamine D2High receptors and 2800 nm at dopamine D2Low receptors, in the same biphasic manner as a dopamine partial agonist antipsychotic drug such as aripiprazole. The clinical doses of cannabidiol are sufficient to occupy the functional D2High sites. it is concluded that the dopamine partial agonist action of cannabidiol may account for its clinical antipsychotic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/27754480

Cannabis as Secondary Drug Is Not Associated With a Greater Risk of Death in Patients With Opiate, Cocaine, or Alcohol Dependence.

Image result for Journal of Addiction Medicine

“To assess the impact of cannabis use as secondary drug on mortality of patients with other major substance use disorders.

Positive urinary cannabis did not confer an increased risk of death in patients with severe opiate, cocaine or alcohol dependence.”

https://www.ncbi.nlm.nih.gov/pubmed/27753720

Δ9-THC Intoxication by Cannabidiol-Enriched Cannabis Extract in Two Children with Refractory Epilepsy: Full Remission after Switching to Purified Cannabidiol.

Image result for Front Pharmacol

“Animal studies and preliminary clinical trials have shown that cannabidiol (CBD)-enriched extracts may have beneficial effects for children with treatment-resistant epilepsy.

We describe the cases of two children with treatment-resistant epilepsy (Case A with left frontal dysplasia and Case B with Dravet Syndrome) with initial symptom improvement after the introduction of CBD extracts followed by seizure worsening after a short time.

The children presented typical signs of intoxication by Δ9-THC (inappropriate laughter, ataxia, reduced attention, and eye redness) after using a CBD-enriched extract.

The extract was replaced by the same dose of purified CBD with no Δ9-THC in both cases, which led to improvement in intoxication signs and seizure remission.

These cases support pre-clinical and preliminary clinical evidence suggesting that CBD may be effective for some patients with epilepsy.

Moreover, the cases highlight the need for randomized clinical trials using high-quality and reliable substances to ascertain the safety and efficacy of cannabinoids as medicines.”

https://www.ncbi.nlm.nih.gov/pubmed/27746737

N-Oleoylethanolamine Reduces Inflammatory Cytokines and Adhesion Molecules in TNF-α-induced Human Umbilical Vein Endothelial Cells by Activating CB2 and PPAR-α.

Image result for J Cardiovasc Pharmacol

“Inflammation plays a pivotal role in the pathogenesis of atherosclerosis.

Peroxisome proliferator-activated receptor-alpha (PPAR-α) and cannabinoid receptor 2 (CB2) crucially impact the modulation of inflammation.

N-Oleoylethanolamine (OEA), a natural agonist of PPAR-α, can also up-regulate the expression of CB2 in human umbilical vein endothelial cells (HUVECs) and further shows an antiatherosclerotic effect.

Our study was designed to determinate whether OEA could inhibit inflammation in HUVECs induced by tumor necrosis factor-α (TNF-α) and to identify the mechanism of OEA function.

These results suggest that OEA exerts anti-inflammatory and anti-adhesive effects on HUVECs.”

https://www.ncbi.nlm.nih.gov/pubmed/27281236

Chronic stress leads to epigenetic dysregulation of neuropeptide-Y and cannabinoid CB1 receptor in the mouse cingulate cortex.

Image result for Neuropharmacology

“Persistent stress triggers a variety of mechanisms, which may ultimately lead to the occurrence of anxiety- and depression-related disorders.

Epigenetic modifications represent a mechanism by which chronic stress mediates long-term effects. Here, we analyzed brain tissue from mice exposed to chronic unpredictable stress (CUS), which induced impaired emotional and nociceptive behaviors.

As endocannabinoid (eCB) and neuropeptide-Y (Npy) systems modulate emotional processes, we hypothesized that CUS may affect these systems through epigenetic mechanisms.

We found reduced Npy expression and Npy type 1 receptor (Npy1r) signaling, and decreased expression of the cannabinoid type 1 receptor (CB1) in the cingulate cortex of CUS mice specifically in low CB1-expressing neurons.

Our findings suggest that epigenetic alterations in the Npy and CB1 genes represent one of the potential mechanisms contributing to the emotional imbalance induced by CUS in mice, and that the Npy and eCB systems may represent therapeutic targets for the treatment of psychopathologies associated with or triggered by chronic stress states.”

https://www.ncbi.nlm.nih.gov/pubmed/27737789

Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2′-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice.

Image result for Eur J Pharmacol.

“We evaluated the effects of ACEA (selective cannabinoid (CB)1 receptor agonist), WIN 55,212-2 mesylate (WIN; non-selective CB1and CB2 receptor agonist) and N-palmitoylethanolamine (PEA; an endogenous fatty acid of ethanolamide) in DBA/2 mice, a genetic model of reflex audiogenic epilepsy.

PEA, ACEA or WIN intraperitoneal (i.p.) administration decreased the severity of tonic-clonic seizures.

PEA has anticonvulsant features in DBA/2 mice mainly through PPAR-α and likely indirectly on CB1 receptors, whereas ACEA and WIN act through CB1 receptors.

In conclusion, PEA, ACEA and WIN show anticonvulsant effects in DBA/2 mice and potentiate the effects several AEDs suggesting a possible therapeutic relevance of these drugs and their mechanisms of action.”

https://www.ncbi.nlm.nih.gov/pubmed/27663280