Non-Δ⁹tetrahydrocannabinol phytocannabinoids stimulate feeding in rats.

 Image result for Behav Pharmacol

“Cannabinoid type 1 receptor-mediated appetite stimulation by Δ⁹tetrahydrocannabinol (Δ⁹THC) is well understood.

Recently, it has become apparent that non-Δ⁹THC phytocannabinoids could also alter feeding patterns.

Here, we show definitively that non-Δ⁹THC phytocannabinoids stimulate feeding.

Twelve male, Lister-Hooded rats were prefed to satiety prior to administration of a standardized cannabis extract or to either of two mixtures of pure phytocannabinoids (extract analogues) comprising the phytocannabinoids present in the same proportions as the standardized extract (one with and one without Δ⁹THC). Hourly intake and meal pattern data were recorded and analysed using two-way analysis of variance followed by one-way analysis of variance and Bonferroni post-hoc tests.

Administration of both extract analogues significantly increased feeding behaviours over the period of the test. All three agents increased hour-one intake and meal-one size and decreased the latency to feed, although the zero-Δ⁹THC extract analogue did so to a lesser degree than the high-Δ⁹THC analogue.

Furthermore, only the analogue containing Δ⁹THC significantly increased meal duration.

The data confirm that at least one non-Δ⁹THC phytocannabinoid induces feeding pattern changes in rats, although further trials using individual phytocannabinoids are required to fully understand the observed effects.”

https://www.ncbi.nlm.nih.gov/pubmed/22157176

A low-Δ9 tetrahydrocannabinol cannabis extract induces hyperphagia in rats.

Image result for Behav Pharmacol

“Appetite stimulation via partial agonism of cannabinoid type 1 receptors by Δtetrahydrocannabinol (ΔTHC) is well documented and can be modulated by non-ΔTHC phytocannabinoids.

ΔTHC concentrations sufficient to elicit hyperphagia induce changes to both appetitive (reduced latency to feed) and consummatory (increased meal one size and duration) behaviours.

Here, we show that a cannabis extract containing too little ΔTHC to stimulate appetite can induce hyperphagia solely by increasing appetitive behaviours.

These results show only the increase in appetitive behaviours, which could be attributed to non-ΔTHC phytocannabinoids in the extract rather than ΔTHC.

Although further study is required to determine the constituents responsible for these effects, these results support the presence of non-ΔTHC cannabis constituent(s) that exert a stimulatory effect on appetite and likely lack the detrimental psychoactive effects of ΔTHC.”

https://www.ncbi.nlm.nih.gov/pubmed/20975531

Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity.

Image result for Physiol Behav

“The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance.

We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats.

We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose).

These results suggest that endogenous activity at peripheral CB1Rs in WD mice is critical for driving hyperphagia.

In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid system (i.e., cannabinoid receptors, and endocannabinoid biosynthetic and degradative enzymes) was dysregulated in WD mice when compared to SC mice.

Our results suggest that hyperphagia associated with WD-induced obesity is driven by enhanced endocannabinoid signaling at peripheral CB1Rs.”

https://www.ncbi.nlm.nih.gov/pubmed/28065722

The Endocannabinoid System and Anxiety.

Image result for Vitamins and Hormones

“The medical properties of Cannabis sativa is known for centuries.

Since the discovery and characterization of the endogenous cannabinoid system, several studies have evaluated how cannabinoid compounds and, particularly, how the modulation of the endocannabinoid (eCB) system influences a wide range of functions, from metabolic to mental disorders. Cannabinoids and eCB system often exert opposite effects on several functions, such as anxiety. Although the mechanisms are not completely understood, evidence points to different factors influencing those effects.

In this chapter, the recent advances in research about the relationship between eCB system and anxiety disorders in humans, as well as in animal models, will be discussed. The recent data addressing modulation of the eCBs in specific brain areas, such as the medial prefrontal cortex, amygdaloid complex, bed nucleus of stria terminalis, hippocampus, and dorsal periaqueductal gray, will be summarized. Finally, data from animal models addressing the mechanisms through which the eCB system modulates anxiety-related behavior dependent on stressful situations, such as the involvement of different receptors, distinct eCBs, modulation of neurotransmitters release, HPA axis and immune system activation, and plastic mechanisms, will also be discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/28061971

Association Between Use of Cannabis in Adolescence and Weight Change into Midlife.

Image result for plos one

“Cannabis use has been found to stimulate appetite and potentially promote weight gain via activation of the endocannabinoid system.

Despite the fact that the onset of cannabis use is typically during adolescence, the association between adolescence cannabis use and long-term change in body weight is generally unknown.

This study aims to examine the association between adolescence cannabis use and weight change to midlife, while accounting for the use of other substances.

In conclusion, this study does not provide evidence of an association between adolescence cannabis use and weight change from adolescence to midlife.”

Cannabinoids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review and meta-analysis.

Image result for BJU Int.

“To systematically review all available evidence on efficacy and safety of cannabinoids for treating neurogenic lower urinary tract dysfunction (NLUTD) in patients with multiple sclerosis (MS).

:Preliminary data imply, that cannabinoids might be an effective and safe treatment option for NULTD in patients with MS.”

https://www.ncbi.nlm.nih.gov/pubmed/28058780

Therapeutic Use of Cannabis in Inflammatory Bowel Disease.

Logo of gasthep

“The marijuana plant Cannabis sativa and its derivatives, cannabinoids, have grown increasingly popular as a potential therapy for inflammatory bowel disease (IBD). Studies have shown that modulation of the endocannabinoid system, which regulates various functions in the body and has been shown to play a key role in the pathogenesis of IBD, has a therapeutic effect in mouse colitis.

The plant Cannabis sativa has been used in medicinal practice for thousands of years. Anecdotal reports have suggested a therapeutic role for cannabis in the treatment of IBD for hundreds of years. A case report from 1990 describes patients with IBD maintaining remission of disease via cannabis use. Cannabinoids appear to have a clear role in gut pathology and offer a potential target for drug intervention in the treatment of IBD. Cannabis seems to be of symptomatic benefit to patients often refractory to conventional medicines.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193087/

Association of cannabis use with the development of elevated anxiety symptoms in the general population: a meta-analysis.

Image result for journal of epidemiology & community health

“The aim of this meta-analysis was to investigate the association of cannabis use with the development of elevated anxiety symptoms in the general population.

The findings indicate that cannabis use is no more than a minor risk factor for the development of elevated anxiety symptoms in the general population.”

https://www.ncbi.nlm.nih.gov/pubmed/28053188

InMed Announces Progress on COPD Treatment Using Cannabinoids

InMed Announces Progress on COPD Treatment Using Cannabinoids

“Recent research has indicated that cannabinoid-based therapies might be effective in ameliorating the most important symptoms of COPD.”

“Researchers have observed that cannabinoids can be bronchodilatory, immunosuppressive, and anti-inflammatory, suggesting that cannabinoid-based therapies might offer safer and more effective treatment options for COPD.”

“Additionally, studies have suggested that cannabinoids might help promote better sleep, support the immune system, work as an expectorant, relieve pain, and have anti-microbial properties.”

https://copdnewstoday.com/2016/12/08/inmed-announces-progress-copd-treatment-using-cannabinoids/

http://www.thctotalhealthcare.com/category/copd-chronic-obstructive-pulmonary-disease/

A user’s guide to cannabinoid therapies in oncology.

Image result for Curr Oncol

“”Cannabinoid” is the collective term for a group of chemical compounds that either are derived from the Cannabis plant, are synthetic analogues, or occur endogenously.

Although cannabinoids interact mostly at the level of the currently recognized cannabinoid receptors, they might have cross reactivity, such as at opioid receptors.

Patients with malignant disease represent a cohort within health care that have some of the greatest unmet needs despite the availability of a plethora of guideline-driven disease-modulating treatments and pain and symptom management options.

Cannabinoid therapies are varied and versatile, and can be offered as pharmaceuticals (nabilone, dronabinol, and nabiximols), dried botanical material, and edible organic oils infused with cannabis extracts. Cannabinoid therapy regimens can be creative, involving combinations of all of the aforementioned modalities.

Patients with malignant disease, at all points of their disease trajectory, could be candidates for cannabinoid therapies whether as monotherapies or as adjuvants.

The most studied and established roles for cannabinoid therapies include pain, chemotherapy-induced nausea and vomiting, and anorexia.

Moreover, given their breadth of activity, cannabinoids could be used to concurrently optimize the management of multiple symptoms, thereby reducing overall polypharmacy.

The use of cannabinoid therapies could be effective in improving quality of life and possibly modifying malignancy by virtue of direct effects and in improving compliance or adherence with disease-modulating treatments such as chemotherapy and radiation therapy.”  https://www.ncbi.nlm.nih.gov/pubmed/28050136

“The Cannabis plant has a long and colourful history that spans more than 5000 years of world history and human usage. In contemporary times, the term “cannabis” has commonly been supplanted by the more colloquial term “marijuana” (also spelled “marihuana”). An extremely versatile and easily cultivatable plant, Cannabis was used by ancient cultures for food, fibre, and medicinal purposes. The integration and broader utilization of cannabinoid therapies within the domain of oncology (including palliation) carries the potential not only for improved health care outcomes for patients but also for economic savings and greater safety for society. Patient reports of improvement in quality of life, especially for those undergoing intensive treatment regimens, could be key to patients continuing with lifesaving or life-prolonging therapies.”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176373/