Anti-inflammatory role of cannabidiol and O-1602 in cerulein-induced acute pancreatitis in mice.

Image result for Pancreas journal

“The anti-inflammatory effects of O-1602 and cannabidiol (CBD), the ligands of G protein-coupled receptor 55 (GPR55), on experimental acute pancreatitis (AP) were investigated.

Cannabidiol or O-1602 treatment significantly improved the pathological changes of mice with AP and decreased the enzyme activities, IL-6 and tumor necrosis factor α; levels, and the myeloperoxidase activities in plasma and in the organ tissues.

G protein-coupled receptor 55 mRNA and protein expressed in the pancreatic tissue, and the expressions were decreased in the mice with AP, and either CBD or O-1602 attenuated these changes to a certain extent.

CONCLUSION:

Cannabidiol and O-1602 showed anti-inflammatory effects in mice with AP and improved the expression of GPR55 in the pancreatic tissue as well.”

https://www.ncbi.nlm.nih.gov/pubmed/22850623

Cannabinoids Ameliorate Pain and Reduce Disease Pathology in Cerulein-Induced Acute Pancreatitis

Image result for gastroenterology journal

“The endocannabinoid system has been identified as a major regulator of physiological and pathological processes, such as pain, inflammation, cell growth, cell death, and as a regulator of diverse gastrointestinal functions, such as intestinal motility and secretion.

Although cannabinoid-induced analgesia was initially primarily attributed to the activation of cannabinoid receptor 1 (CB1) in the nervous system, later studies demonstrated a contribution of cannabinoid receptor 2 (CB2), localized peripherally on immune cells as well as in the nervous system.

A complex interplay between endogenously released cannabinoids, such as anandamide or 2-arachidonoylglycerol, and their receptors both on inflammatory cells and neurons is involved in modulation of inflammatory pain.

In this article, we demonstrate the in vivo significance and therapeutic potential of cannabinoids in inflammation and pain associated with pancreatitis using human specimens and mouse models as test systems.

Our results are more in line with a recent study reporting a protective role for the endogenous cannabinoid system against colonic inflammation in a mouse model of experimental colitis.

Consistent with the above, we now show that acute pancreatitis, a visceral inflammatory disease in humans, is associated with an activation of the endocannabinoid system.

In humans, acute pancreatitis is associated with up-regulation of ligands as well as receptors of the endocannabinoid system in the pancreas. Furthermore, our results suggest a therapeutic potential for cannabinoids in abolishing pain associated with acute pancreatitis and in partially reducing inflammation and disease pathology in the absence of adverse side effects.

Because management of visceral inflammatory diseases should ideally include antinociceptive as well as anti-inflammatory components, our results lay a basis for testing the therapeutic value of cannabinoids as supplements to conventional analgesic therapy.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268094/

Cannabinoids Reduce Markers of Inflammation and Fibrosis in Pancreatic Stellate Cells

Image result for plos one

“While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC) are unknown.

The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP) tissues.

Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

Because drugs for the treatment of chronic pancreatitis should ideally exert anti-fibrotic and anti-inflammatory properties, their bimodal effects rather contradict a therapeutic use of CB-receptor antagonists and promote the hypothesis that (re-)activation of the (endo-)cannabinoid system in chronic pancreatitis may be beneficial for suppressing disease progress.

In conclusion, we show that the endocannabinoid system is downregulated in chronic pancreatitis and that its augmentation via exogenously administered cannabinoids specifically reduces activation of pancreatic stellate cells.

These experiments lay a basis for testing the value of synthetic cannabinoids in the treatment of chronic pancreatitis.”

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001701

Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: implication for treatment of acute pancreatitis

Image result for nature scientific reports

“Trans-resveratrol is a natural stilbenoid possessing multifarious pharmacological benefits; however, when orally consumed, it is rapidly metabolised by colonic microflora and converted to dihydro-resveratrol. Thus, this microbial metabolite is of great therapeutic relevance.

Trans-resveratrol (trans-3,5,4′-trihydroxystilbene) is a natural phenolic derivative of the stilbenoid family found in skins of red grapes, berries and peanuts. As a renowned antioxidant used in a number of preclinical and clinical studies, its remarkable antioxidant activities are often related to its nature as a potent Sirtuin1 activator.

 Aside from being detected as a colonic metabolite of trans-resveratrol, dihydro-resveratrol is indeed produced by a number of plant species including Orchidaceae and Cannabis sativa L. as a phytoalexin against abiotic and biotic stress factors.
 In the present study, we aimed to examine whether dihydro-resveratrol, as a remedial agent, attenuates oxidative damage in pancreatic tissues of rats with cerulein-induced acute pancreatitis and to delineate its underlying molecular actions.
 Collectively, the current findings accentuate new mechanistic insight of dihydro-resveratrol in pancreatic oxidative damage, and advocate its therapeutic potential for the management of acute pancreatitis, particularly for patients unresponsive to trans-resveratrol due to the lack of proper microbial strains.
 In conclusion, we suggest that dihydro-resveratrol may serve as a therapeutic or an adjuvant agent for the management of acute pancreatitis, in particular to patients who have microbial restriction in metabolizing trans-resveratrol and received unresponsiveness.”
http://www.nature.com/articles/srep22859

Cannabinoids and Cystic Fibrosis

Related image
“Cannabis stimulates appetite and food intake. This property has been exploited to benefit AIDS and cancer patients suffering from wasting disease, by administering the whole plant or its major active ingredient ?-tetrahydrocannabinol (THC). Endogenous cannabinoids (“endocannabinoids”) are found in maternal milk. We have recently shown that endocannabinoids are critical for milk ingestion and survival of newborns because blocking CB1 receptors resulted in death from malnutrition. Lack of appetite resulting in malnutrition is a contributing factor to mortality in many Cystic Fibrosis (CF) patients. It is proposed here for the first time, to administer THC to CF patients. It is hoped that the cannabinoid will alleviate malnutrition and thus help prevent wasting in CF patients. Recent findings suggest that a lipid imbalance (high arachidonic acid/low DHA) is a primary factor in the etiology of CF and that defective CFTR (CF transmembrane conductor regulator) that characterizes the CF condition is responsible for the dysregulation. Endocannabinoids are all fatty acid derivatives. Therefore, it is further proposed here that the CFTR gene product also modulates endocannabinoid synthesis, through regulation of fatty acid biosynthesis. According to this hypothesis, CF patients display decreased levels of endocannabinoids and by elevating these levels, symptoms may improve. Indeed, a number of physiological mechanisms of cannabinoids and endocannabinoids coincide with the pathology of CF. Thus it is suggested that potential benefits from THC treatment, in addition to appetite stimulation, will include antiemetic, bronchodilating, anti-inflammatory, anti-diarrheal and hypo-algesic effects.” https://www.researchgate.net/publication/233294071_Cannabinoids_and_Cystic_Fibrosis

“Cannabinoids and Cystic Fibrosis. A Novel Approach to Etiology and Therapy”  http://www.tandfonline.com/doi/abs/10.1300/J175v02n01_03

Regulation of Adult Neurogenesis by Cannabinoids

Image result for researchgate

“In the adult mammalian brain, new neurons are born throughout life, and these new cells may influence learning, memory, olfaction, and even mood. The putative function of these new neurons suggests that manipulation of adult neurogenesis could be used therapeutically in the future, and emphasizes the importance of understanding how neurogenesis is regulated. Voluntary exercise and antidepressants are examples of factors that increase neurogenesis, while stress and drugs of abuse – alcohol, nicotine, psychostimulants, opiates – decrease neurogenesis. In contrast to the clear negative influence of these drugs of abuse, cannabinoids have mixed influence, with some marijuana-like compounds actually enhancing neurogenesis.”  https://www.researchgate.net/publication/264424221_Regulation_of_Adult_Neurogenesis_by_Cannabinoids

“The role of cannabinoids in adult neurogenesis”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543605/

“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects”  http://www.jci.org/articles/view/25509

Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model.

Image result for neuropsychopharmacology journal

“Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required.

Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties, however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction.

CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model, did not affect total body weight gain, food or water intake, and had no effect in control animals.

In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection.

These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/28230072

Childhood academic ability in relation to cigarette, alcohol and cannabis use from adolescence into early adulthood: Longitudinal Study of Young People in England (LSYPE).

Related image

“Our aim was to determine the association between childhood academic ability and the onset and persistence of tobacco, alcohol and cannabis use across adolescence in a representative sample of English schools pupils.

High academic ability was also positively associated with occasional and persistent cannabis use in late adolescence.

In a sample of over 6000 young people in England, high childhood academic at age 11 is associated with a reduced risk of cigarette smoking but an increased risk of drinking alcohol regularly and cannabis use. These associations persist into early adulthood, providing evidence against the hypothesis that high academic ability is associated with temporary ‘experimentation’ with substance use.”

https://www.ncbi.nlm.nih.gov/pubmed/28228447

“Looking for Pot Smokers? Check the Gifted-Students Class” http://www.medpagetoday.com/pediatrics/generalpediatrics/63354
“Which Teens Are Most Likely to Smoke Pot? The Smart Ones, Study Finds” http://time.com/4678433/brainy-teens-smoke-tobacco-pot-study/
 

Cannabidiol Prevents Cerebral Infarction Via a Serotonergic 5-Hydroxytryptamine1A Receptor–Dependent Mechanism

Image result for stroke journal

“Cannabis contains ≈80 different cannabinoids, including the psychoactive component Δ9-tetrahydrocannabinol, and nonpsychoactive components, which include cannabidiol, cannabinol, and cannabigerol.

In those components, cannabidiol, a nonpsychoactive constituent of cannabis, was found to be an anticonvulsant in animal models of epilepsy and in humans with epilepsy. Moreover, cannabidiol has been shown to have antispasmodic, anxiolytic, antinausea, and antirheumatoid arthritic properties. In addition, cannabidiol has been shown to be protective against global and focal ischemic injury.

Cannabidiol has been reported to be a neuroprotectant, but the neuroprotective mechanism of cannabidiol remains unclear. We studied the neuroprotective mechanism of cannabidiol in 4-hour middle cerebral artery (MCA) occlusion mice.

Cannabidiol significantly reduced the infarct volume induced by MCA occlusion in a bell-shaped curve. Similarly, abnormal cannabidiol but not anandamide or methanandamide reduced the infarct volume.

Cannabidiol and abnormal cannabidiol reduced the infarct volume.

These results suggested that the neuroprotective effect of cannabidiol may be related to the increase in CBF through the serotonergic 5-HT1A receptor.”

http://stroke.ahajournals.org/content/36/5/1071

http://www.thctotalhealthcare.com/category/stroke-2/

Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons

fx1

“Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury.

In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen–glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line.

This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.

Cannabidiol (CBD) is a nonpsychoactive cannabinoid derived from Cannabis sativa and a weak CB1 and CB2 cannabinoid receptor antagonist, with very low toxicity for humans. It has recently been demonstrated in vivo and in vitro that CBD has a variety of therapeutic properties, exerting antidepressant, anxiolytic, anti-inflammatory, immunomodulatory, and neuroprotective effects.  Our results provide novel insight into the neuroprotective properties of CBD, which involves the regulation of the mitochondrial bioenergetics and the glucose metabolism of hippocampal neurons during OGD/R injury.

In summary, our results suggest that CBD exerts a potent neuroprotective effect against ischemia/reperfusion injury by attenuating intracellular oxidative stress, enhancing mitochondrial bioenergetics, and optimizing glucose metabolism via the pentose-phosphate pathway, thus strengthening the antioxidant defenses and preserving the energy homeostasis of neurons. More in-depth studies are required to investigate the precise mechanism underlying the success of CBD treatment and to determine the actual role of CBD in cerebral ischemia.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247568/

“Cannabidiol may soon be used in the emergency room to fight effects of stroke and cardiac emergencies” http://www.naturalnews.com/2017-02-21-cannabidiol-may-soon-be-used-in-the-emergency-room-to-fight-effects-of-stroke-cardiac-emergencies.html