The effects of synthetic cannabinoids on executive function.

Image result for Psychopharmacology (Berl)

“There is a growing use of novel psychoactive substances (NPSs) including synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis but the new synthetic cannabinoids are more potent and dangerous and their use has resulted in various adverse effects. The purpose of the study was to assess whether persistent use of synthetic cannabinoids is associating with impairments of executive function in chronic users.

Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall). Additionally, they have also shown higher ratings of depression and anxiety compared with both recreational and non-users groups.

This study showed impairment of executive function in synthetic cannabinoid users compared with recreational users of cannabis and non-users. This may have major implications for our understanding of the long-term consequences of synthetic cannabinoid based drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/28160034

A selective CB2R agonist (JWH133) restores neuronal circuit after Germinal Matrix Hemorrhage in the preterm via CX3CR1+ microglia.

Image result for neuropharmacology journal

“Microglia play dual roles after germinal matrix hemorrhage, and the neurotrophic phenotype maybe neuroprotective.

We raise the hypothesis that a cannabinoid receptor2 agonist (JWH133) accelerates the CX3CR1+ microglia secreting neurotrophic factors and restores damaged neuronal circuit.

Overall, this study provides evidence that JWH133 promoted a neurotrophic phenotype of microglia (CX3CR1+ microglia), beyond merely alleviating microglial proliferation and inflammation.

Moreover, JWH133 restored impaired neuronal circuit, which represent a novel therapeutic strategy following GMH in clinic.”

https://www.ncbi.nlm.nih.gov/pubmed/28153531