It’s Colorectal Cancer Awareness Month. Please Be Aware:

“Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature. This review clearly demonstrates that various nutraceuticals provided by the Mother Nature have a huge potential for both prevention and treatment of Colorectal cancer (CRC). Since these agents can be administered chronically without any concern for safety and are highly affordable, their use has been the wave of the past and is likely to continue as the wave of the future.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693477/
“Links between inflammation and colon cancer metastasis” https://www.sciencedaily.com/releases/2015/08/150825094923.htm
“Inflammation and colon cancer. The connection between inflammation and tumorigenesis is well-established. Inflammation is also likely to be involved with other forms of sporadic as well as heritable colon cancer.https://www.ncbi.nlm.nih.gov/pubmed/20420949
“Cannabis-derived substances in cancer therapy–an emerging anti-inflammatory role for the cannabinoids. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds. https://www.ncbi.nlm.nih.gov/pubmed/20925645
“Cannabinoids as gastrointestinal anti-inflammatory drugs.” https://www.ncbi.nlm.nih.gov/pubmed/28239924
“Colon Cancer Risk Linked To High-Fat Diet: How Eating More Fat Can Increase Intestinal Tumors” http://www.medicaldaily.com/colon-cancer-high-fat-diet-intestinal-tumors-376664
 
“Study: Red and Processed Meats Linked With Colon Cancer Risk” http://healthland.time.com/2011/05/27/study-red-and-processed-meats-linked-with-colon-cancer-risk/
 
“Eating hot dogs, ham and other processed meat can cause colorectal cancer, and eating red meat “probably” can cause cancer, the World Health Organization’s cancer agency reported” http://www.usatoday.com/story/news/nation/2015/10/26/experts-processed-meats-can-cause-cancer/74615390/
 
“Mediterranean Diet Reduces Risk of Colon Cancer”
 
 
“More evidence a veg diet might lower cancer risk” http://www.today.com/health/veggie-diet-lowers-colon-cancer-risk-t7671
 
 
 
“Omegas linked with colon cancer survival. A large, observational study has linked higher intake of omega-3s with a lower risk of dying from colon cancer.” http://www.newhope.com/breaking-news/omegas-linked-colon-cancer-survival
 “Study shows how high-fat diets increase colon cancer risk” http://news.temple.edu/news/2012-03-06/study-shows-how-high-fat-diets-increase-colon-cancer-risk
“Poor metabolic health linked to increased risk for colorectal cancer in normal-weight women” http://www.news-medical.net/news/20170201/Poor-metabolic-health-linked-to-increased-risk-for-colorectal-cancer-in-normal-weight-women.aspx
 
“Cheese, Milk, and Fatty Fish Can Help Fight Colon Cancer” https://munchies.vice.com/en_us/article/cheese-milk-and-fatty-fish-can-help-fight-colon-cancer
“Diet, exercise and aspirin: 3 tools to fight colon cancer” http://ktar.com/story/1314810/diet-exercise-aspirin-3-tools-fight-colon-cancer/
“Many Early Colon Cancers Linked to Inherited Genes” https://medlineplus.gov/news/fullstory_162574.html
“E.coli Bacteria Linked to Colon Cancer” http://www.ibtimes.co.uk/e-coli-bateria-linked-colon-cancer-375102
 
“Colorectal cancer prevalence linked to human papillomavirus: a systematic review with meta-analysis” http://www.scielo.br/scielo.php?pid=S1415-790X2016000400791&script=sci_arttext&tlng=en
“Colon cancer linked to viruses in beef, Nobel-winning scientist contends” http://www.scmp.com/lifestyle/health/article/1695757/colon-cancer-linked-viruses-beef-nobel-winning-scientist-contends
 
“Diet High in Choline Linked with Increased Risk of Colorectal Polyps. According to the results of a study published in the Journal of the National Cancer Institute, high intake of choline-a nutrient found in foods such as red meat, eggs, poultry, and dairy products-may be linked with an increased risk of colorectal polyps.” http://news.cancerconnect.com/diet-high-in-choline-linked-with-increased-risk-of-colorectal-polyps/
“High-Glycemic Foods Linked to Colon Cancer. These foods include breads, pastas, pancakes, and other carbohydrates made from refined “white” grains, as well as other processed or sugary foods such as cakes, cookies, and other snacks.” http://www.webmd.com/colorectal-cancer/news/20040203/high-glycemic-foods-linked-to-colon-cancer#1
 
“Low-carb diet cuts risk of colon cancer” https://www.utoronto.ca/news/low-carb-diet-cuts-risk-colon-cancer
 
“Common food additive promotes colon cancer in mice. Emulsifiers, which are added to most processed foods to aid texture and extend shelf life, can alter intestinal bacteria in a manner that promotes intestinal inflammation and colorectal cancer” https://www.sciencedaily.com/releases/2016/11/161107110639.htm
“Processed meats including bacon, hot dogs linked to colon cancer” http://www.cp24.com/news/processed-meats-including-bacon-hot-dogs-linked-to-colon-cancer-1.2627498
“Processed meat can cause colon cancer, World Health Organization says” http://www.cbc.ca/news/health/meat-cancer-world-health-organization-1.3288355
 
“Sweets, sugary snacks linked to colorectal cancer” http://www.cbsnews.com/news/sweets-sugary-snacks-linked-to-colorectal-cancer/
“Eating Nuts Linked to Lower Risk of Colon Cancer” http://www.livescience.com/54448-eating-nuts-may-lower-colon-cancer-risk.html
 
“Coffee consumption linked to lower risk of colorectal cancer” http://www.ctvnews.ca/health/coffee-consumption-linked-to-lower-risk-of-colorectal-cancer-1.2841834
“Alcohol Linked to Colorectal Cancer Risk” http://www.medscape.com/viewarticle/749886
“Excessive alcohol consumption favours high risk polyp or colorectal cancer occurrence among patients with adenomas: a case control study” http://gut.bmj.com/content/50/1/38.full
 
“High vitamin D levels linked to lower risk of colon cancer” http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_22-1-2010-13-46-0
 
“Anthocyanins in Purple, Blue and Red Foods Fight Colon Cancer” http://reliawire.com/anthocyanins-purple-blue-red-foods-fight-colon-cancer/
 
“Prunes reduce colon cancer risk by benefiting healthy gut bacteria” http://www.belmarrahealth.com/prunes-reduce-colon-cancer-risk-by-benefiting-healthy-gut-bacteria/
“BLACK RASPBERRIES A POTENTIALLY POWERFUL AGENT IN FIGHT AGAINST COLON CANCER” https://researchnews.osu.edu/archive/brberry.htm
 
 
 
 
 
“G‐protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. GPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688947/
“The putative cannabinoid receptor GPR55 promotes cancer cell proliferation.” http://www.ncbi.nlm.nih.gov/pubmed/21057532
 “L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Evidence points to a role of L-α-lysophosphatidylinositol (LPI) in cancer.” http://www.ncbi.nlm.nih.gov/pubmed/21367464
“Modulation of l-α-Lysophosphatidylinositol/GPR55 Mitogen-activated Protein Kinase (MAPK) Signaling by Cannabinoids*Here, we report that the little investigated cannabis constituents CBDV, CBGA, and CBGV are potent inhibitors of LPI-induced GPR55 signaling. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/
 “Cannabinoids and cancer: potential for colorectal cancer therapy.” https://www.ncbi.nlm.nih.gov/pubmed/16042581
 “The endogenous cannabinoid system protects against colonic inflammation”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC385396/
 “Cannabinoids in intestinal inflammation and cancer. In vivo, cannabinoids – via direct or indirect activation of CB(1) and/or CB(2) receptors – exert protective effects in well-established models of intestinal inflammation and colon cancer. Pharmacological elevation of endocannabinoid levels may be a promising strategy to counteract intestinal inflammation and colon cancer.” http://www.ncbi.nlm.nih.gov/pubmed/19442536
 “Cannabinoids have become a novel therapeutic approach against colon cancer with protective and anti-tumoral effects on colorectal carcinoma cell lines and in animal models of colon cancer” http://impactjournals.com/oncoscience/index.php?pii=119 
 “Possible endocannabinoid control of colorectal cancer growth. Inhibitors of endocannabinoid inactivation may prove useful anticancer agents.” https://www.ncbi.nlm.nih.gov/pubmed/12949714
“Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. Cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increasing evidence shows antitumor actions of cannabinoid agonists on several tumor cells in vitro and in animal models” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755791/

“Loss of cannabinoid receptor 1 accelerates intestinal tumor growth”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561258/

“Turned-off Cannabinoid Receptor Turns On Colorectal Tumor Growth” https://www.sciencedaily.com/releases/2008/08/080801074056.htm

“Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention. Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).” http://www.news-medical.net/news/2008/08/03/40485.aspx

“Cannabinoid Receptor Activation Induces Apoptosis through Tumor Necrosis Factor α–Mediated Ceramide De novo Synthesis in Colon Cancer Cells. The present study shows that either CB1 or CB2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. ” http://clincancerres.aacrjournals.org/content/14/23/7691.long

“The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Here, we report that CB1 and CB2 cannabinoid receptors are expressed in human colorectal adenoma and carcinoma cells, and show for the first time that THC induces apoptosis in colorectal cancer cells. The use of THC, or selective targeting of the CB1 receptor, may represent a novel strategy for colorectal cancer therapy.” http://www.ncbi.nlm.nih.gov/pubmed/17583570

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

“Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer” http://www.medicinenet.com/script/main/art.asp?articlekey=91511

“Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.” https://www.ncbi.nlm.nih.gov/pubmed/22231745

“CBD-Rich Marijuana Fights Colon Cancer, New Study Finds” http://blog.sfgate.com/smellthetruth/2014/01/06/cbd-rich-marijuana-fights-colon-cancer-new-study-finds/

“Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Cannabis-based medicines are useful adjunctive treatments in cancer patients.” http://www.ncbi.nlm.nih.gov/pubmed/24373545

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid. CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells. CBG should be considered translationally in colorectal cancer prevention and cure.” http://www.ncbi.nlm.nih.gov/pubmed/25269802

“According to researchers at the University of Texas in Houston chemicals in marijuana could be a potential cure in the treatment of colon cancer.” http://www.digitaljournal.com/article/258161

“Cannabis compound clue to colon cancer”  https://www.newscientist.com/article/mg19926685.000-cannabis-compound-clue-to-colon-cancer/

“Marijuana takes on colon cancer” https://www.newscientist.com/article/dn14451-marijuana-takes-on-colon-cancer/

“Cannabinoids appear to kill tumor cells but do not affect their nontransformed counterparts and may even protect them from cell death. Tumor specimens revealed that THC had antiangiogenic and antiproliferative effects. CBD has also been demonstrated to exert a chemopreventive effect in a mouse model of colon cancer. In in vitro experiments involving colorectal cancer cell lines, the investigators found that CBD protected DNA from oxidative damage, increased endocannabinoid levels, and reduced cell proliferation. In addition, both plant-derived and endogenous cannabinoids have been studied for anti-inflammatory effects. A mouse study demonstrated that endogenous cannabinoid system signaling is likely to provide intrinsic protection against colonic inflammation. As a result, a hypothesis that phytocannabinoids and endocannabinoids may be useful in the risk reduction and treatment of colorectal cancer has been developed.” http://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_7

Co-localization of the cannabinoid type 1 receptor with corticotropin-releasing factor-containing afferents in the noradrenergic nucleus locus coeruleus: implications for the cognitive limb of the stress response.

Image result for Brain Structure and Function journal

“The noradrenergic system has been shown to play a key role in the regulation of stress responses, arousal, mood, and emotional states. Corticotropin-releasing factor (CRF) is a primary mediator of stress-induced activation of noradrenergic neurons in the nucleus locus coeruleus (LC).

The endocannabinoid (eCB) system also plays a key role in modulating stress responses, acting as an “anti-stress” neuro-mediator.

In the present study, we investigated the cellular sites for interactions between the cannabinoid receptor type 1 (CB1r) and CRF in the LC.

Taken together, these results indicate that the eCB system is poised to directly modulate stress-integrative heterogeneous CRF afferents in the LC, some of which arise from limbic sources.”

The current status of artisanal cannabis for the treatment of epilepsy in the United States.

Image result for Epilepsy Behav

“The widespread patient use of artisanal cannabis preparations has preceded quality validation of cannabis use for epilepsy. Neurologists and cannabinoid specialists are increasingly in a position to monitor and guide the use of herbal cannabis in epilepsy patients. We report the retrospective data on efficacy and adverse effects of artisanal cannabis in Patients with medically refractory epilepsy with mixed etiologies in Washington State, California, and Maine. Clinical considerations, including potential risks and benefits, challenges related to artisanal preparations, and cannabinoid dosing, are discussed.

RESULTS:

Of 272 combined patients from Washington State and California, 37 (14%) found cannabis ineffective at reducing seizures, 29 (15%) experienced a 1-25% reduction in seizures, 60 (18%) experienced a 26-50% reduction in seizures, 45 (17%) experienced a 51-75% reduction in seizures, 75 (28%) experienced a 76-99% reduction in seizures, and 26 (10%) experienced a complete clinical response. Overall, adverse effects were mild and infrequent, and beneficial side effects such as increased alertness were reported. The majority of patients used cannabidiol (CBD)-enriched artisanal formulas, some with the addition of delta-9-tetrahydrocannabinol (THC) and tetrahydrocannabinolic acid (THCA). Four case reports are included that illustrate clinical responses at doses <0.1mg/kg/day, biphasic dose-response effects, the use of THCA for seizure prevention, the use of THC for seizure rescue, and the synergy of cannabinoids and terpenoids in artisanal preparations. This article is part of a Special Issue entitled “Cannabinoids and Epilepsy”.”

https://www.ncbi.nlm.nih.gov/pubmed/28254350

The role of exercise training and the endocannabinoid system in atherosclerotic plaque burden and composition in Apo-E-deficient mice.

Image result for Hellenic Journal of Cardiology

“We investigated the effect of combining exercise training and treatment with an endocannabinoid receptor 1 inhibitor (Rimonabant) on atherosclerosis burden and composition.

Both exercise and rimonabant treatments induced plaque regression and promoted plaque stability. The combined treatment failed to show additive or synergistic benefits relative to either intervention alone.”

https://www.ncbi.nlm.nih.gov/pubmed/28254386

CB1 receptor-mediated respiratory depression by endocannabinoids.

Image result for Respir Physiol Neurobiol.

“Endocannabinoids (ECs) are bioactive lipid mediators acting on two distinct cannabinoid receptors (CB1 and CB2), which are ubiquitously expressed in many tissues including the respiratory system. Despite numerous experimental data showing that cannabinomimetics influence respiration, the role of endogenously produced ECs in respiratory control has not been verified yet. Pulse oximetry was used in the present study to directly measure changes in respiratory parameters during elevation of EC levels. The cannabinoid reuptake inhibitor AM-404 (10mgkg-1, i.v.), but not its vehicle, induced a transient reduction of respiratory rate with a concomitant depression of arterial oxygen saturation and increase in breath distension in wild-type mice. In contrast, CB1 knock-out mice showed no alteration in any of these parameters upon administration of AM-404. Our results imply that the EC system has an important role in the physiological control of respiration by modulating the respiratory rate and consequently influencing arterial oxygen saturation. Furthermore, this mechanism is entirely dependent on CB1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/28254562

CB2 cannabinoid receptors modulate HIF-1α and TIM-3 expression in a hypoxia-ischemia mouse model.

Image result for european neuropsychopharmacology

“The role of CB2 cannabinoid receptors (CB2R) in global brain lesions induced by hypoxia-ischemia (HI) insult is still unresolved.

The aim of this study was to evaluate the involvement of CB2R in the behavioural and biochemical underpinnings related to brain damage induced by HI in adult mice, and the mechanisms involved.

Our results indicate that CB2R may have a crucial neuroprotective role following HI insult through the modulation of the inflammatory-related HIF-1α/TIM-3 signalling pathway in microglia.”

https://www.ncbi.nlm.nih.gov/pubmed/28253997

Potential of Cannabidiol for the Treatment of Viral Hepatitis.

Image result for pharmacological research journal

“Viral hepatitis B (HBV) and hepatitis C (HCV) pose a major health problem globally and if untreated, both viruses lead to severe liver damage resulting in liver cirrhosis and cancer. While HBV has a vaccine, HCV has none at the moment. The risk of drug resistance, combined with the high cost of current therapies, makes it a necessity for cost-effective therapeutics to be discovered and developed.

The recent surge in interest in Medical Cannabis has led to interest in evaluating and validating the therapeutic potentials of Cannabis and its metabolites against various diseases including viruses. Preliminary screening of cannabidiol (CBD) revealed that CBD is active against HCV but not against HBV in vitro. CBD inhibited HCV replication by 86.4% at a single concentration of 10 μM with EC50 of 3.163 μM in a dose-response assay.

These findings suggest that CBD could be further developed and used therapeutically against HCV. Cannabidiol exhibited in vitro activity against viral hepatitis C.”  https://www.ncbi.nlm.nih.gov/pubmed/28250664

“Cannabidiol (CBD) is a nonpsychoactive cannabinoid found in the Cannabis plants and is credited for several pharmacological properties. It is also known to have beneficial effects against inflammation/pain, neurological conditions, cancer, and other ailments. In general, with regard to antiviral activity, medical Cannabis was reported to be used as an accompanying remedy by HIV/AIDS patients to alleviate neuropathic pain, wasting, nausea, and vomiting. Given the increasing use and application of medical Cannabis along with its nonpsychoactive metabolite (CBD), and in line with our continuous effort to evaluate and validate the potential therapeutic properties of CBD, the major aim of this study was as such to evaluate the anti-HBV and anti-HCV activities of CBD in vitro. We report here for the first time in vitro studies to demonstrate the antiviral activity of CBD against HCV. CBD was shown to have activity against HCV in vitro but not against HBV. A review of the literature seems to suggest that CBD may also have activity in vivo based on its interaction with the CB2 receptor and as such using a host mechanism to indirectly slow the pathogenic process of the HBV virus. Based on these findings, CBD as such has potential to be further developed as a treatment for viral hepatitis, especially as a combination therapy with the currently existing therapies.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330095/

The Direct Actions of Cannabidiol and 2-Arachidonoyl Glycerol at GABAA Receptors.

Image result for Pharmacol Res.

“Cannabidiol (CBD) is a major non-intoxicating component of cannabis and possesses anti-epileptic, anxiolytic and anti-hyperalgesic properties.

Despite evidence that some endogenous and synthetic cannabinoids interact with GABAA receptors, no-one has yet investigated the effects of CBD.

Here we used two-electrode voltage clamp electrophysiology to compare the actions of CBD with those of the major central endocannabinoid, 2-arachidonoyl glycerol (2-AG) on human recombinant GABAA receptors (synaptic α1-6βg2 and extrasynaptic α4β2δ) expressed on Xenopus oocytes.

Taken together these results reveal a mode of action of CBD on specifically configured GABAA receptors that may be relevant to the anticonvulsant and anxiolytic effects of the compound.”

https://www.ncbi.nlm.nih.gov/pubmed/28249817

Flexible Bionanocomposites from Epoxidised Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes.

Image result for J Phys Chem B

“Hempseed (Cannabis sativa L.) oil comprises a variety of beneficial unsaturated triglycerides with well-documented nutritional and health benefits.

However, it can become rancid over a relatively short time period leading to increased industrial costs and waste of a valuable product. The development of sustainable polymers is presented as a strategy where both the presence of unsaturation and perox-ide content could be affectively utilised to alleviate both this waste and financial burden.

After reaction with peroxyacetic acid, incorporation of halloysite nanotubes (HNTs) and sub-sequent thermal curing, without the need for organic sol-vents or interfacial modifiers, flexible transparent materials with a low glass transition temperature were developed. The improvement in thermal stability and both the static and dynamic mechanical properties of the bionanocomposites were significantly enhanced with the well-dispersed HNT filler. At an optimum concentration of 0.5 wt.% HNTs, a simultaneous increase in stiffness, strength, ductility and toughness was observed in comparison to the unfilled cured resin.

These sustainable food-waste derived bionanocompo-sites may provide an interesting alternative to petroleum-based materials, particularly for low-load bearing applica-tions, such as packaging.”

https://www.ncbi.nlm.nih.gov/pubmed/28240903

Changes in the Brain Endocannabinoid System in Rat Models of Depression.

Image result for Neurotox Res

“A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression.

The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses.

These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).”

https://www.ncbi.nlm.nih.gov/pubmed/28247204