Endocannabinoids in arthritis: current views and perspective.

International Journal of Rheumatic Diseases

“Preclinical and clinical studies using cannabis-based therapy have been shown to provide both analgesia and anti-inflammatory effects, with an overall alleviation of clinical symptoms in animal models of arthritis, highlighting its promising therapeutic application for humans. Despite this, the development of cannabis-based therapeutics remains in its infancy, with further investigation into its efficacy and safety profile in patients still required. This synopsis reviews the various components of the endocannabinoid system in health and disease and their potential as therapeutic targets.”

https://www.ncbi.nlm.nih.gov/pubmed/28736968

http://onlinelibrary.wiley.com/doi/10.1111/1756-185X.13146/abstract

Neuroprotection by (endo)cannabinoids in glaucoma and retinal neurodegenerative diseases.

“Emerging neuroprotective strategies are being explored to preserve the retina from degeneration, that occurs in eye pathologies like glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Incidentally, neuroprotection of retina is a defending mechanism designed to prevent or delay neuronal cell death, and to maintain neural function following an initial insult, thus avoiding loss of vision.

Numerous studies have investigated potential neuroprotective properties of plant-derived phytocannabinoids, as well as of their endogenous counterparts collectively termed endocannabinoids (eCBs), in several degenerative diseases of the retina.

eCBs are a group of neuromodulators that, mainly by activating G protein-coupled type-1 and type-2 cannabinoid (CB1 and CB2) receptors, trigger multiple signal transduction cascades that modulate central and peripheral cell functions. A fine balance between biosynthetic and degrading enzymes that control the right concentration of eCBs has been shown to provide neuroprotection in traumatic, ischemic, inflammatory and neurotoxic damage of the brain.

Since the existence of eCBs and their binding receptors was documented in the retina of numerous species (from fishes to primates), their involvement in the visual processing has been demonstrated, more recently with a focus on retinal neurodegeneration and neuroprotection. The aim of this review is to present a modern view of the endocannabinoid system, in order to discuss in a better perspective available data from preclinical studies on the use of eCBs as new neuroprotective agents, potentially useful to prevent glaucoma and retinal neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28738764

http://www.eurekaselect.com/154386/article

Alleviation of Neuropathology by Inhibition of Monoacylglycerol Lipase in APP Transgenic Mice Lacking CB2 Receptors.

Molecular Neurobiology

“Inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, produces profound anti-inflammatory and neuroprotective effects and improves synaptic and cognitive functions in animal models of Alzheimer’s disease (AD). However, the molecular mechanisms underlying the beneficial effects produced by inhibition of 2-AG metabolism are still not clear.

The cannabinoid receptor type 2 (CB2R) has been thought to be a therapeutic target for AD. Here, we provide evidence, however, that CB2R does not play a role in ameliorating AD neuropathology produced by inactivation of MAGL in 5XFAD APP transgenic mice, an animal model of AD.

Our results suggest that CB2R is not required in ameliorating neuropathology and preventing cognitive decline by inhibition of 2-AG metabolism in AD model animals.”

AM1241 alleviates MPTP-induced Parkinson’s disease and promotes the regeneration of DA neurons in PD mice.

Related image

“The main pathological feature of Parkinson’s disease (PD) is the loss of dopaminergic neurons in the substantia nigra. In this study, we investigated the role of cannabinoid receptor 2 (CB2R) agonist AM1241 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a mouse model of PD. Upon treatment with AM1241, the decreased CB2R level in the PD mouse brain was reversed and the behavior score markedly elevated, accompanied with a dose-dependent increase of dopamine and serotonin. In addition, western blot assay and immunostaining results suggested that AM1241 significantly activated PI3K/Akt/MEK phosphorylation and increased the expression of Parkin and PINK1, both in the substantia nigra and hippocampus. The mRNA expression analysis further demonstrated that AM1241 increased expression of the CB2R and activated Parkin/PINK1 signaling pathways. Furthermore, the increased number of TH-positive cells in the substantia nigra indicated that AM1241 regenerated DA neurons in PD mice, and could therefore be a potential candidate for PD treatment. The clear co-localization of CB2R and DA neurons suggested that AM1241 targeted CB2R, thus also identifying a novel target for PD treatment. In conclusion, the selective CB2 agonist AM1241 has a significant therapeutic effect on PD mice and resulted in regeneration of DA neurons following MPTP-induced neurotoxicity. The possible mechanisms underlying the neurogenesis effect of AM1241 might be the induction of CB2R expression and an increase in phosphorylation of the PI3K/AKT signaling pathway.”

Endocannabinoids exert CB1 receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein.

Cover image

“In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids (eCBs) elicit neuroprotective and anti-inflammatory actions in several central nervous system (CNS) disease models, but their effects in HAND remain unknown. HIV-1 does not infect neurons, but produces viral toxins, such as transactivator of transcription (Tat), that disrupt neuronal calcium equilibrium and give rise to synaptodendritic injuries and cell death, the former being highly correlated with HAND. Consequently, we tested whether the eCBs N-arachidonoyl ethanolamine (anandamide/AEA) and 2-arachidonoyl-glycerol (2-AG) offer neuroprotective actions in a neuronal culture model. Specifically, we examined the neuroprotective actions of these eCBs on Tat excitotoxicity in primary cultures of prefrontal cortex neurons (PFC), and whether cannabinoid receptors mediate this neuroprotection. Tat-induced excitotoxicity was reflected by increased intracellular calcium levels, synaptodendritic damage, neuronal excitability, and neuronal death. Further, upregulation of cannabinoid 1 receptor (CB1R) protein levels was noted in the presence of HIV-1 Tat. The direct application of AEA and 2-AG reduced excitotoxic levels of intracellular calcium and promoted neuronal survival following Tat exposure, which was prevented by the CB1R antagonist rimonabant, but not by the CB2R antagonist AM630. Overall, our findings indicate that eCBs protect PFC neurons from Tat excitotoxicity in vitro via a CB1R-related mechanism. Thus, the eCB system possesses promising targets for treatment of neurodegenerative disorders associated with HIV-1 infection.”

https://www.ncbi.nlm.nih.gov/pubmed/28733129

http://www.sciencedirect.com/science/article/pii/S1044743117300830

 

Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice.

Cover image

“Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective.

β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. Herein, we used the mouse model of PINP to show the therapeutic effects of BCP in this neuropathy.

Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.”  https://www.ncbi.nlm.nih.gov/pubmed/28729222

http://www.sciencedirect.com/science/article/pii/S0028390817303465

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

[Cannabidiol: its use in refractory epilepsies].

Image result for Rev Neurol

“Some epileptic syndromes are characterised by seizures that are difficult to control and are associated to delayed neuropsychomotor development, which results in a deterioration in the patient’s quality of life as well as in that of his or her family.

AIM:

To evaluate the use of cannabidiol as adjuvant therapy in patients with refractory epilepsies.

PATIENTS AND METHODS:

An observational study was conducted by means of a survey addressed to the patient’s caregiver. Data collected included information about the patient and the caregiver, changes observed in the seizures, neuropsychological effects, side effects and the family’s overall perception following the use of cannabidiol.

RESULTS:

The evaluation examined 15 patients with refractory epilepsies, who received cannabidiol over a period ranging from one month to one year. The frequency of seizures decreased in 40% of the patients, 60% of the patients were seen to have control over 50% of their seizures and in 27% of them the seizures disappeared completely. Neurocognitive changes were also reported: behaviour improved in 73%; 60% reported an improvement in language; in 50% sleep improved; 43% reported improvements in eating habits; and 100% said their mood had improved. The overall perception of the illness was that there had been improvements in 73% of respondents. The most common side effects were drowsiness and fatigue.

CONCLUSIONS:

These results suggest a possible beneficial effect of cannabidiol on the control of seizures and on the improvement of certain neurocognitive aspects in patients with refractory epilepsies.”

https://www.ncbi.nlm.nih.gov/pubmed/28726233

Smoked marijuana attenuates performance and mood disruptions during simulated night shift work.

Drug and Alcohol Dependence Home

“Individuals who work nonstandard schedules, such as rotating or night shifts, are more susceptible to workplace injuries, performance decrements, and reduced productivity. This population is also almost twice as likely to use illicit drugs as individuals working a standard day shift. The purpose of this study was to examine the effects of smoked marijuana on performance, mood, and sleep during simulated shift work.

Ten experienced marijuana smokers completed this 23-day, within-participant residential study. They smoked a single marijuana cigarette (0, 1.9, 3.56% Δ9-THC) one hour after waking for three consecutive days under two shift conditions: day shift and night shift. Shifts alternated three times during the study, and shift conditions were separated by an ‘off’ day. When participants smoked placebo cigarettes, psychomotor performance and subjective-effect ratings were altered during the night shift compared to the day shift: performance (e.g., vigilance) and a few subjective ratings were decreased (e.g., “Self-Confident”), whereas other ratings were increased (e.g., “Tired”). Objective and subjective measures of sleep were also disrupted, but to a lesser extent.

Marijuana attenuated some performance, mood, and sleep disruptions: participants performed better on vigilance tasks, reported being less miserable and tired and sleep a greater number of minutes. Limited negative effects of marijuana were noted. These data demonstrate that abrupt shift changes produce performance, mood, and sleep decrements during night shift work and that smoked marijuana containing low to moderate Δ9-THC concentrations can offset some of these effects in frequent marijuana smokers.”

https://www.ncbi.nlm.nih.gov/pubmed/28728115

http://www.drugandalcoholdependence.com/article/S0376-8716(17)30309-5/fulltext

Amidoalkylindoles as Potent and Selective Cannabinoid Type 2 Receptor Agonists with In Vivo Efficacy in a Mouse Model of Multiple Sclerosis.

Journal of Medicinal Chemistry

“Selective CB2 agonists represent an attractive therapeutic strategy for the treatment of a variety of diseases without psychiatric side effects mediated by the CB1 receptor.

We carried out a rational optimization of a black market designer drug SDB-001 that led to the identification of potent and selective CB2 agonists. A 7-methoxy or 7-methylthio substitution at the 3-amidoalkylindoles resulted in potent CB2 antagonists (27 or 28, IC50 = 16-28 nM). Replacement of the amidoalkyls from 3-position to the 2-position of the indole ring dramatically increased the agonist selectivity on the CB2 over CB1 receptor. Particularly, compound 57 displayed a potent agonist activity on the CB2 receptor (EC50 = 114-142 nM) without observable agonist or antagonist activity on the CB1 receptor.

Furthermore, 57 significantly alleviated the clinical symptoms and protected the murine central nervous system from immune damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis.”

Endocannabinoids Have Opposing Effects On Behavioral Responses To Nociceptive And Non-nociceptive Stimuli.

“The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain.

However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo.

These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.”