Cannabis use in people with Parkinson's disease and Multiple Sclerosis: A web-based investigation.

“Cannabis has been used for medicinal purpose for thousands of years; however the positive and negative effects of cannabis use in Parkinson’s disease (PD) and Multiple Sclerosis (MS) are mostly unknown. Our aim was to assess cannabis use in PD and MS and compare results of self-reported assessments of neurological disability between current cannabis users and non-users.

Current users reported high efficacy of cannabis, 6.4 (SD 1.8) on a scale from 0 to 7 and 59% reported reducing prescription medication since beginning cannabis use. Current cannabis users were younger and less likely to be classified as obese. Cannabis users reported lower levels of disability, specifically in domains of mood, memory, and fatigue.

Cannabis may have positive impacts on mood, memory, fatigue, and obesity status in people with PD and MS. Further studies using clinically and longitudinally assessed measurements of these domains are needed to establish if these associations are causal and determine the long-term benefits and consequences of cannabis use in people with PD and MS.”

https://www.ncbi.nlm.nih.gov/pubmed/28735833 http://www.sciencedirect.com/science/article/pii/S0965229917302340]]>

Endocannabinoids in arthritis: current views and perspective.

“Preclinical and clinical studies using cannabis-based therapy have been shown to provide both analgesia and anti-inflammatory effects, with an overall alleviation of clinical symptoms in animal models of arthritis, highlighting its promising therapeutic application for humans. Despite this, the development of cannabis-based therapeutics remains in its infancy, with further investigation into its efficacy and safety profile in patients still required. This synopsis reviews the various components of the endocannabinoid system in health and disease and their potential as therapeutic targets.” https://www.ncbi.nlm.nih.gov/pubmed/28736968 http://onlinelibrary.wiley.com/doi/10.1111/1756-185X.13146/abstract]]>

Neuroprotection by (endo)cannabinoids in glaucoma and retinal neurodegenerative diseases.

“Emerging neuroprotective strategies are being explored to preserve the retina from degeneration, that occurs in eye pathologies like glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Incidentally, neuroprotection of retina is a defending mechanism designed to prevent or delay neuronal cell death, and to maintain neural function following an initial insult, thus avoiding loss of vision. Numerous studies have investigated potential neuroprotective properties of plant-derived phytocannabinoids, as well as of their endogenous counterparts collectively termed endocannabinoids (eCBs), in several degenerative diseases of the retina. eCBs are a group of neuromodulators that, mainly by activating G protein-coupled type-1 and type-2 cannabinoid (CB1 and CB2) receptors, trigger multiple signal transduction cascades that modulate central and peripheral cell functions. A fine balance between biosynthetic and degrading enzymes that control the right concentration of eCBs has been shown to provide neuroprotection in traumatic, ischemic, inflammatory and neurotoxic damage of the brain. Since the existence of eCBs and their binding receptors was documented in the retina of numerous species (from fishes to primates), their involvement in the visual processing has been demonstrated, more recently with a focus on retinal neurodegeneration and neuroprotection. The aim of this review is to present a modern view of the endocannabinoid system, in order to discuss in a better perspective available data from preclinical studies on the use of eCBs as new neuroprotective agents, potentially useful to prevent glaucoma and retinal neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/28738764 http://www.eurekaselect.com/154386/article]]>

Alleviation of Neuropathology by Inhibition of Monoacylglycerol Lipase in APP Transgenic Mice Lacking CB2 Receptors.

Molecular Neurobiology “Inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, produces profound anti-inflammatory and neuroprotective effects and improves synaptic and cognitive functions in animal models of Alzheimer’s disease (AD). However, the molecular mechanisms underlying the beneficial effects produced by inhibition of 2-AG metabolism are still not clear. The cannabinoid receptor type 2 (CB2R) has been thought to be a therapeutic target for AD. Here, we provide evidence, however, that CB2R does not play a role in ameliorating AD neuropathology produced by inactivation of MAGL in 5XFAD APP transgenic mice, an animal model of AD. Our results suggest that CB2R is not required in ameliorating neuropathology and preventing cognitive decline by inhibition of 2-AG metabolism in AD model animals.”
]]>