“We studied our collective open-label, compassionate use experience in using cannabidiol (CBD) to treat epilepsy in patients with CDKL5 deficiency disorder and Aicardi, Doose, and Dup15q syndromes. This open-label drug trial provides class III evidence for the long-term safety and efficacy of cannabidiol (CBD) administration in patients with treatment-resistant epilepsy (TRE) associated with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Adjuvant therapy with CBD showed similar safety and efficacy for these four syndromes as reported in a diverse population of TRE etiologies.” https://www.ncbi.nlm.nih.gov/pubmed/30006259 https://www.epilepsybehavior.com/article/S1525-5050(18)30191-4/fulltext
Monthly Archives: July 2018
Integrating endocannabinoid signaling in the regulation of anxiety and depression
“Brain endogenous cannabinoid (eCB) signaling seems to harmonize appropriate behavioral responses, which are essential for the organism’s long-term viability and homeostasis. Dysregulation of eCB signaling contributes to negative emotional states and increased stress responses. An understanding of the underlying neural cell populations and neural circuit regulation will enable the development of therapeutic strategies to mitigate behavioral maladaptation and provide insight into the influence of eCB on the neural circuits involved in anxiety and depression. This review focuses on recent evidence that has added a new layer of complexity to the idea of targeting the eCB system for therapeutic benefits in neuropsychiatric disease and on the future research direction of neural circuit modulation.”
Effectiveness of Raw, Natural Medical Cannabis Flower for Treating Insomnia under Naturalistic Conditions.
“Background: We use a mobile software application (app) to measure for the first time, which fundamental characteristics of raw, natural medical Cannabis flower are associated with changes in perceived insomnia under naturalistic conditions.
Methods: Four hundred and nine people with a specified condition of insomnia completed 1056 medical cannabis administration sessions using the Releaf AppTM educational software during which they recorded real-time ratings of self-perceived insomnia severity levels prior to and following consumption, experienced side effects, and product characteristics, including combustion method, cannabis subtypes, and/or major cannabinoid contents of cannabis consumed. Within-user effects of different flower characteristics were modeled using a fixed effects panel regression approach with standard errors clustered at the user level.
Results: Releaf AppTM users showed an average symptom severity reduction of -4.5 points on a 0⁻10 point visual analogue scale (SD = 2.7, d = 2.10, p < 0.001). Use of pipes and vaporizers was associated with greater symptom relief and more positive and context-specific side effects as compared to the use of joints, while vaporization was also associated with lower negative effects. Cannabidiol (CBD) was associated with greater statistically significant symptom relief than tetrahydrocannabinol (THC), but the cannabinoid levels generally were not associated with differential side effects. Flower from C. sativa plants was associated with more negative side effects than flower from C. indica or hybrid plant subtypes.
Conclusions: Consumption of medical Cannabis flower is associated with significant improvements in perceived insomnia with differential effectiveness and side effect profiles, depending on the product characteristics.”
Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results.
“Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded-access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016.
METHODS:
Twenty-five US-based EAP sites enrolling patients with TRE taking stable doses of antiepileptic drugs (AEDs) at baseline were included. During the 4-week baseline period, parents/caregivers kept diaries of all countable seizure types. Patients received oral CBD starting at 2-10 mg/kg/d, titrated to a maximum dose of 25-50 mg/kg/d. Patient visits were every 2-4 weeks through 16 weeks and every 2-12 weeks thereafter. Efficacy endpoints included the percentage change from baseline in median monthly convulsive and total seizure frequency, and percentage of patients with ≥50%, ≥75%, and 100% reductions in seizures vs baseline. Data were analyzed descriptively for the efficacy analysis set and using the last-observation-carried-forward method to account for missing data. Adverse events (AEs) were documented at each visit.
RESULTS:
Of 607 patients in the safety dataset, 146 (24%) withdrew; the most common reasons were lack of efficacy (89 [15%]) and AEs (32 [5%]). Mean age was 13 years (range, 0.4-62). Median number of concomitant AEDs was 3 (range, 0-10). Median CBD dose was 25 mg/kg/d; median treatment duration was 48 weeks. Add-on CBD reduced median monthly convulsive seizures by 51% and total seizures by 48% at 12 weeks; reductions were similar through 96 weeks. Proportion of patients with ≥50%, ≥75%, and 100% reductions in convulsive seizures were 52%, 31%, and 11%, respectively, at 12 weeks, with similar rates through 96 weeks. CBD was generally well tolerated; most common AEs were diarrhea (29%) and somnolence (22%).
SIGNIFICANCE:
Results from this ongoing EAP support previous observational and clinical trial data showing that add-on CBD may be an efficacious long-term treatment option for TRE.”
Marijuana use and short-term outcomes in patients hospitalized for acute myocardial infarction.
“Marijuana use is increasing worldwide, and it is ever more likely that patients presenting with acute myocardial infarctions (AMI) will be marijuana users. However, little is known about the impact of marijuana use on short-term outcomes following AMI.
Accordingly, we compared in-hospital outcomes of AMI patients with reported marijuana use to those with no reported marijuana use. We hypothesized that marijuana use would be associated with increased risk of adverse outcomes in AMI patients.
Interestingly, marijuana-using patients were significantly less likely to die, experience shock, or require an IABP post AMI than patients with no reported marijuana use.
These results suggest that, contrary to our hypothesis, marijuana use was not associated with increased risk of adverse short-term outcomes following AMI.
Furthermore, marijuana use was associated with decreased in-hospital mortality post-AMI.”
https://www.ncbi.nlm.nih.gov/pubmed/29995914
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199705
“Myocardial Infarction (Heart Attack)” https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0021982/
Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression.
“Colorectal cancer remains the third most common cancer diagnosis and fourth leading cause of cancer-related mortality worldwide. Purified cannabinoids have been reported to prevent proliferation, metastasis, and induce apoptosis in a variety of cancer cell types. However, the active compounds from Cannabis sativa flowers and their interactions remain elusive.
Research Aim: This study was aimed to specify the cytotoxic effect of C. sativa-derived extracts on colon cancer cells and adenomatous polyps by identification of active compound(s) and characterization of their interaction.
Conclusions:C. sativa compounds interact synergistically for cytotoxic activity against colon cancer cells and induce cell cycle arrest, apoptotic cell death, and distinct gene expression. F3, F7, and F7+F3 are also active on adenomatous polyps, suggesting possible future therapeutic value.”
Development of a Cannabinoid-Based Photoaffinity Probe to Determine the Δ8/9-Tetrahydrocannabinol Protein Interaction Landscape in Neuroblastoma Cells.
“Δ9-Tetrahydrocannabinol (THC), the principle psychoactive ingredient in Cannabis, is widely used for its therapeutic effects in a large variety of diseases, but it also has numerous neurological side effects. The cannabinoid receptors (CBRs) are responsible to a large extent for these, but not all biological responses are mediated via the CBRs.
Objectives: The identification of additional target proteins of THC to enable a better understanding of the (adverse) physiological effects of THC.
Methods: In this study, a chemical proteomics approach using a two-step photoaffinity probe is applied to identify potential proteins that may interact with THC.
Results: Photoaffinity probe 1, containing a diazirine as a photocrosslinker, and a terminal alkyne as a ligation handle, was synthesized in 14 steps. It demonstrated high affinity for both CBRs. Subsequently, two-step photoaffinity labeling in neuroblastoma cells led to identification of four potential novel protein targets of THC. The identification of these putative protein hits is a first step towards a better understanding of the protein interaction profile of THC, which could ultimately lead to the development of novel therapeutics based on THC.”
Composition and Use of Cannabis Extracts for Childhood Epilepsy in the Australian Community
“Recent surveys suggest that many parents are using illicit cannabis extracts in the hope of managing seizures in their children with epilepsy. In the current Australian study we conducted semi-structured interviews with families of children with diverse forms of epilepsy to explore their attitudes towards and experiences with using cannabis extracts.
Contrary to family’s expectations, most samples contained low concentrations of cannabidiol, while Δ9-tetrahydrocannabinol was present in nearly every sample. These findings highlight profound variation in the illicit cannabis extracts being currently used in Australia and warrant further investigations into the therapeutic value of cannabinoids in epilepsy.
The phenomenon is not without supporting scientific evidence. Many preclinical studies have identified potent anticonvulsant effects of various cannabinoids in animal models of epilepsy, and a mechanistic understanding of such effects is emerging.
A considerable proportion of families reported cannabis extracts being “effective” in reducing their child’s seizure burden and improving their overall condition, with one family reporting seizure-freedom in their child for at least 12 months. Over half of the cannabis extracts were associated with families reducing or ceasing their use of the child’s conventional antiepileptic drugs.”
https://www.nature.com/articles/s41598-018-28127-0
“Cannabis chemical THC could be missing ‘piece to the puzzle’ in treating kids with epilepsy” http://www.abc.net.au/news/2018-07-05/epilepsy-treatment-cannabis-chemical-thc/9944878
Medical Cannabis Legalization and Opioid Prescriptions: Evidence on US Medicaid Enrollees during 1993-2014.
“While the US has been experiencing an opioid epidemic, 29 states and Washington DC have legalized cannabis for medical use. This study examined whether statewide medical cannabis legalization was associated with reduction in opioids received by Medicaid enrollees.
FINDINGS:
For Schedule III opioid prescriptions, medical cannabis legalization was associated with a 29.6% (p=0.03) reduction in number of prescriptions, 29.9% (p=0.02) reduction in dosage, and 28.8% (p=0.04) reduction in related Medicaid spending. No evidence was found to support the associations between medical cannabis legalization and Schedule II opioid prescriptions. Permitting medical cannabis dispensaries was not associated with Schedule II or Schedule III opioid prescriptions after controlling for medical cannabis legalization. It was estimated that, if all the states had legalized medical cannabis by 2014, Medicaid annual spending on opioid prescriptions would be reduced by 17.8 million dollars.
CONCLUSION:
Statewide medical cannabis legalization appears to have been associated with reductions in both prescriptions and dosages of Schedule III (but not Schedule II) opioids received by Medicaid enrollees in the US.”
In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid.
“Inflammation and oxidative stress play main roles in neurodegeneration. Interestingly, different natural compounds may be able to exert neuroprotective actions against inflammation and oxidative stress, protecting from neuronal cell loss.
Among these natural sources, Cannabis sativa represents a reservoir of compounds exerting beneficial properties, including cannabigerol (CBG), whose antioxidant properties have already been demonstrated in macrophages.
Here, we aimed to evaluate the ability of CBG to protect NSC-34 motor neurons against the toxicity induced from the medium of LPS-stimulated RAW 264.7 macrophages.
All together, these results indicated the neuroprotective effects of CBG, that may be a potential treatment against neuroinflammation and oxidative stress.”