Fast extraction of cannabinoids in marijuana samples by using hard-cap espresso machines.

Talanta

“A simple, quick and low cost procedure was developed for the extraction of Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol from marijuana samples, based on the use of a hard-cap espresso extraction with 2-propanol. After extraction, cannabinoids were directly determined after appropriate dilution by gas-chromatography-mass spectrometry, reaching a limit of detection from 0.03 to 0.05 mg g-1. Extraction efficiency was evaluated by the comparison of results obtained for seized samples by the proposed method and a reference methodology based on ultrasound-assisted extraction. Moreover, ion mobility was proposed for the rapid and sensitive determination of Δ9-tetrahydrocannabinol and cannabidiol providing a quick response for the analysis of seized marijuana samples in 1 min, including extraction, dilution and determination.”

https://www.ncbi.nlm.nih.gov/pubmed/30172516

https://www.sciencedirect.com/science/article/pii/S0039914018308178?via%3Dihub

“Turns Out You Can Use Espresso Machines to Make Marijuana Extracts”  https://www.civilized.life/articles/espresso-machine-marijuana-extracts/

Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches.

Publication Cover

“Accumulating evidence suggests that the endocannabinoid system is a promising target for the treatment of a variety of health conditions.

Two paths of cannabinoid drug development have emerged. One approach is focused on developing medications that are directly derived from the cannabis plant. The other utilizes a single molecule approach whereby individual phytocannabinoids or novel cannabinoids with therapeutic potential are identified and synthesized for pharmaceutical development.

This commentary discusses the unique challenges and merits of botanical vs single molecule cannabinoid drug development strategies, highlights how both can be impacted by legalization of cannabis via legislative processes, and also addresses regulatory and public health considerations that are important to consider as cannabinoid medicine advances as a discipline.”

https://www.ncbi.nlm.nih.gov/pubmed/30179534

https://www.tandfonline.com/doi/abs/10.1080/09540261.2018.1474730?journalCode=iirp20

Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload.

Image result for translational psychiatry

“Iron accumulation in the brain has been recognized as a common feature of both normal aging and neurodegenerative diseases. Cognitive dysfunction has been associated to iron excess in brain regions in humans. We have previously described that iron overload leads to severe memory deficits, including spatial, recognition, and emotional memory impairments in adult rats.

In the present study we investigated the effects of neonatal iron overload on proteins involved in apoptotic pathways, such as Caspase 8, Caspase 9, Caspase 3, Cytochrome c, APAF1, and PARP in the hippocampus of adult rats, in an attempt to establish a causative role of iron excess on cell death in the nervous system, leading to memory dysfunction.

Cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa, was examined as a potential drug to reverse iron-induced effects on the parameters analyzed.

These results suggest that iron can trigger cell death pathways by inducing intrinsic apoptotic proteins. The reversal of iron-induced effects by CBD indicates that it has neuroprotective potential through its anti-apoptotic action.”

“In summary, we have shown that iron treatment in the neonatal period disrupts the apoptotic intrinsic pathway. This finding may place iron excess as a central component in neurodegenerative processes since many neurodegenerative disorders are accompanied by iron accumulation in brain regions. Moreover, indiscriminate iron supplementation to toddlers and infants, modeled here by iron overload in the neonatal period, has been considered a potential environmental risk factor for the development of neurodegenerative disorders later in life. Our findings also strongly suggest that CBD has neuroprotective effects, at least in part by blocking iron-induced apoptosis even at later stages, following iron overload, which puts CBD as a potential therapeutic agent in the treatment of neurodegenerative diseases.”

Cannabis cures the spine.

The Journal of Thoracic and Cardiovascular Surgery Home

“Cannabis cures the spine.” https://www.ncbi.nlm.nih.gov/pubmed/30172587

“Huo and colleagues elegantly demonstrate that the endogenous cannabinoid system can be modulated to provide neuroprotection in ischemic injury of the spine.

Modulation of the endocannabinoid system attenuates ischemic spinal cord injury through CB2-mediated inhibition of the GAPDH/Siah1 signaling cascade, positively influencing neuron survival and function.” https://www.jtcvs.org/article/S0022-5223(18)32080-4/fulltext

Cannabinoids in cancer treatment: Therapeutic potential and legislation.

Bosnian Journal of Basic Medical Sciences

“The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids.

The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes.

Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer.

In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite.

In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types.

Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries.

In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration.

Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients.

The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.”

Cannabidiol as a suggested candidate for treatment of autism spectrum disorder.

 Progress in Neuro-Psychopharmacology and Biological Psychiatry “Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication, restricted and repetitive patterns of behavior, interests, or activities and often intellectual disabilities.

No effective treatment for the core symptoms of ASD is currently available.

There is increasing interest in cannabinoids, especially cannabidiol (CBD), as monotherapy or add-on treatment for the core symptoms and co-morbidities of ASD.

In this review we summarize the available pre-clinical and clinical data regarding the safety and effectiveness of medical cannabis, including CBD, in young ASD patients.

Cannabidiol seems to be a candidate for the treatment of ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/30171992

https://www.sciencedirect.com/science/article/pii/S0278584618304445?via%3Dihub

Acute foot-shock stress decreased seizure susceptibility against pentylenetetrazole-induced seizures in mice: Interaction between endogenous opioids and cannabinoids.

:

“Stressful conditions affect the brain’s neurotransmission and neural pathways that are involved in seizure susceptibility. Stress alters the intensity and/or frequency of seizures.

Although evidence indicates that chronic stress exerts proconvulsant effects and acute stress has anticonvulsant properties, the underlying mechanisms which mediate these effects are not well understood.

In the present study, we assessed the role of endogenous opioids, endocannabinoids, as well as functional interaction between opioid and cannabinoid systems in the anticonvulsant effects of acute foot-shock stress (FSS) against pentylenetetrazole (PTZ)-induced seizures in mice.

CONCLUSIONS:

Opioid and cannabinoid systems are involved in the anticonvulsant effects of acute FSS, and these neurotransmission systems interact functionally in response to acute FSS.”

https://www.ncbi.nlm.nih.gov/pubmed/30170259

https://www.epilepsybehavior.com/article/S1525-5050(17)30777-1/fulltext

Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis.

Biochemical Pharmacology

“The gut microbiota plays a fundamental role on the education and function of the host immune system.

Immunological dysregulation is the cause of numerous human disorders such as autoimmune diseases and metabolic disorders frequently associated with inflammatory processes therefore is critical to explore novel mechanisms involved in maintaining the immune system homeostasis.

The cannabinoid system and related bioactive lipids participate in multiple central and peripheral physiological processes that affect metabolic, gastrointestinal and neuroimmune regulatory mechanisms displaying a modulatory role and contributing to the maintenance of the organism’s homeostasis.

In this review, we gather the knowledge on the gut microbiota-endocannabinoids interactions and their impact on autoimmune disorders such as inflammatory bowel disease, rheumatoid arthritis and particularly, multiple sclerosis (MS) as the best example of a CNS autoimmune disorder.

Furthermore, we contribute to this field with new data on changes in many elements of the cannabinoid system in a viral model of MS after gut microbiota manipulation by both antibiotics and probiotics.

Finally, we highlight new therapeutic opportunities, under an integrative view, targeting the eCBS and the commensal microbiota in the context of neuroinflammation and MS.”

https://www.ncbi.nlm.nih.gov/pubmed/30171835

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303630

When Orexins Meet Cannabinoids: Bidirectional Functional Interactions.

Biochemical Pharmacology

“A growing body of evidence suggests the existence of biochemical and functional interactions between the endocannabinoid and orexin systems. Cannabinoid and orexin receptors have been shown to form heterodimers in agreement with the overlapping distribution of both receptors in several brain areas, and the activation of common intracellular signaling pathways, such as the MAP kinase cascade. The activation of orexin receptors induces the synthesis of the endocannabinoid 2-arachidonoyl glycerol suggesting that the endocannabinoid system participates in some physiological functions of orexins. Indeed, functional interactions between these two systems have been demonstrated in several behavioral responses including nociception, reward and food intake. The present review is focused on the latest developments in cannabinoid-orexin cross-modulation and the implications of this interesting interaction.”

https://www.ncbi.nlm.nih.gov/pubmed/30171834

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303666

Should Cannabinoids Be Added to Multimodal Pain Regimens After Total Hip and Knee Arthroplasty?

Journal of Arthroplasty Home

“This study investigated the effects of dronabinol on pain, nausea, and length of stay following total joint arthroplasty (TJA).

CONCLUSION:

These findings suggest that further investigation into the role of cannabinoid medications for non-opioid pain control in the post-arthroplasty patient may hold merit.”

https://www.ncbi.nlm.nih.gov/pubmed/30170713

“In conclusion, our study suggests that cannabinoids may have a role in post-arthroplasty pain management and may reduce patient’s need for opioid-containing pain medications. Further randomized, prospective clinical trials are warranted to shed more light onto the possible beneficial effects of cannabinoid medications in the orthopedic surgery patient population.” https://www.arthroplastyjournal.org/article/S0883-5403(18)30670-3/fulltext