Anti-inflammatory agents for smoking cessation? Focus on cognitive deficits associated with nicotine withdrawal in male mice.

 Brain, Behavior, and Immunity

“Nicotine withdrawal is associated with cognitive deficits including attention, working memory, and episodic memory impairments.

Treatment with the non-psychoactive cannabinoid cannabidiol abolished memory impairment of nicotine withdrawal and microglia reactivity, reduced the expression of IL1β and IFNγ in the hippocampus and the prefrontal cortex, respectively, and normalized Ki67 levels. The nonsteroidal anti-inflammatory drug indomethacin also prevented cognitive deficits and microglial reactivity during withdrawal.

These data underline the usefulness of anti-inflammatory agents to improve cognitive performance during early nicotine abstinence.”

https://www.ncbi.nlm.nih.gov/pubmed/30391635

https://www.sciencedirect.com/science/article/pii/S0889159118302599?via%3Dihub

Cannabis Therapeutics and the Future of Neurology.

Image result for frontiers in integrative neuroscience

“Neurological therapeutics have been hampered by its inability to advance beyond symptomatic treatment of neurodegenerative disorders into the realm of actual palliation, arrest or reversal of the attendant pathological processes.

While cannabis-based medicines have demonstrated safety, efficacy and consistency sufficient for regulatory approval in spasticity in multiple sclerosis (MS), and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges remain.

This review will examine the intriguing promise that recent discoveries regarding cannabis-based medicines offer to neurological therapeutics by incorporating the neutral phytocannabinoids tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), and cannabis terpenoids in the putative treatment of five syndromes, currently labeled recalcitrant to therapeutic success, and wherein improved pharmacological intervention is required: intractable epilepsy, brain tumors, Parkinson disease (PD), Alzheimer disease (AD) and traumatic brain injury (TBI)/chronic traumatic encephalopathy (CTE).

Current basic science and clinical investigations support the safety and efficacy of such interventions in treatment of these currently intractable conditions, that in some cases share pathological processes, and the plausibility of interventions that harness endocannabinoid mechanisms, whether mediated via direct activity on CB1 and CB2 (tetrahydrocannabinol, THC, caryophyllene), peroxisome proliferator-activated receptor-gamma (PPARγ; THCA), 5-HT1A (CBD, CBDA) or even nutritional approaches utilizing prebiotics and probiotics.

The inherent polypharmaceutical properties of cannabis botanicals offer distinct advantages over the current single-target pharmaceutical model and portend to revolutionize neurological treatment into a new reality of effective interventional and even preventative treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/30405366

https://www.frontiersin.org/articles/10.3389/fnint.2018.00051/full

Pain and Depression: A Systematic Review.

 Image result for harv rev psychiatry

“Pain comorbid with depression is frequently encountered in clinical settings and often leads to significant impaired functioning. Given the complexity of comorbidities, it is important to address both pain and depressive symptoms when evaluating treatment options.

Overall, studies suggested that pain and depression are highly intertwined and may co-exacerbate physical and psychological symptoms. These symptoms could lead to poor physical functional outcomes and longer duration of symptoms. An important biochemical basis for pain and depression focuses on serotonergic and norepinephrine systems, which is evident in the pain-ameliorating properties of serotonergic and norepinephrine antidepressants.

Alternative pharmacotherapies such as ketamine and cannabinoids appear to be safe and effective options for improving depressive symptoms and ameliorating pain. In addition, cognitive-behavioral therapy may be a promising tool in the management of chronic pain and depression.

CONCLUSION:

The majority of the literature indicates that patients with pain and depression experience reduced physical, mental, and social functioning as opposed to patients with only depression or only pain. In addition, ketamine, psychotropic, and cognitive-behavioral therapies present promising options for treating both pain and depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30407234

https://insights.ovid.com/crossref?an=00023727-201811000-00005

Cannabis and the Anxiety of Fragmentation-A Systems Approach for Finding an Anxiolytic Cannabis Chemotype.

 Image result for frontiers in neuroscience

“Cannabis sativa is a medicinal herb with a diverse range of chemotypes that can exert both anxiolytic and anxiogenic effects on humans. Medical cannabis patients receiving organically grown cannabis from a single source were surveyed about the effectiveness of cannabis for treating anxiety.

Patients rated cannabis as highly effective overall for treating anxiety with an average score of 8.03 on a Likert scale of 0 to 10 (0 = not effective, 10 = extremely effective).

Patients also identified which strains they found the most or least effective for relieving their symptoms of anxiety. To find correlations between anxiolytic activity and chemotype, the top four strains voted most and least effective were analyzed by HPLC-MS/MS to quantify cannabinoids and GC-MS to quantify terpenes. Tetrahydrocannabinol (THC) and trans-nerolidol have statistically significant correlations with increased anxiolytic activity.

Guiaol, eucalyptol, γ-terpinene, α-phellandrene, 3-carene, and sabinene hydrate all have significant correlations with decreased anxiolytic activity. Further studies are needed to better elucidate the entourage effects that contribute to the anxiolytic properties of cannabis varieties.”

https://www.ncbi.nlm.nih.gov/pubmed/30405331

https://www.frontiersin.org/articles/10.3389/fnins.2018.00730/full

Medical cannabis: A needs analysis for people with epilepsy.

Complementary Therapies in Clinical Practice

“Medical cannabis may be effective treatment for refractory epilepsy.

It is timely to seek users’ and potential users’ opinions in regard to its place in the management of epilepsy.

RESULTS:

People with epilepsy (33/71) and carers (38/71) participated. Fifty-four participants indicated no experience with medical cannabis, although 35, mainly with inadequate response to prescription medicines, were willing to ask for a prescription. Concerns included difficulty accessing cannabis and high cost of this treatment. Tablets/capsules was the most acceptable dosage form for development.

CONCLUSION:

These findings suggest wide interest in trialling medical cannabis in individual cases of refractory epilepsy, despite the developing body of literature and some concerns about cost and procurement.”

https://www.ncbi.nlm.nih.gov/pubmed/30396625

https://www.sciencedirect.com/science/article/pii/S1744388118302354?via%3Dihub

Efficacy of cannabinoids in paediatric epilepsy.

Developmental Medicine & Child Neurology banner

“There are hundreds of compounds found in the marijuana plant, each contributing differently to the antiepileptic and psychiatric effects. Cannabidiol (CBD) has the most evidence of antiepileptic efficacy and does not have the psychoactive effects of ∆9 -tetrahydrocannabinol. CBD does not act via cannabinoid receptors and its antiepileptic mechanism of action is unknown. Despite considerable community interest in the use of CBD for paediatric epilepsy, there has been little evidence for its use apart from anecdotal reports, until the last year. Three randomized, placebo-controlled, double-blind trials in Dravet syndrome and Lennox-Gastaut syndrome found that CBD produced a 38% to 41% median reduction in all seizures compared to 13% to 19% on placebo. Similarly, CBD resulted in a 39% to 46% responder rate (50% convulsive or drop-seizure reduction) compared to 14% to 27% on placebo. CBD was well tolerated; however, sedation, diarrhoea, and decreased appetite were frequent. CBD shows similar efficacy to established antiepileptic drugs. WHAT THIS PAPER ADDS: Cannabidiol (CBD) shows similar efficacy in the severe paediatric epilepsies to other antiepileptic drugs. Careful down-titration of benzodiazepines is essential to minimize sedation with adjunctive CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30402932

https://onlinelibrary.wiley.com/doi/full/10.1111/dmcn.14087

New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota.

Logo of jctr

“The incidence of atherosclerosis is increasing rapidly all over the world. Inflammatory processes have outstanding role in coronary artery disease (CAD) etiology and other atherosclerosis manifestations. Recently attentions have been increased about gut microbiota in many fields of medicine especially in inflammatory diseases like atherosclerosis. Ineffectiveness in gut barrier functions and subsequent metabolic endotoxemia (caused by rise in plasma lipopolysaccharide levels) is associated with low-grade chronic inflammation i.e. a recognized feature of atherosclerosis. Furthermore, the role of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite has been suggested in atherosclerosis development. On the other hand, the effectiveness of gut microbiota modulation that results in TMAO reduction has been investigated. Moreover, considerable evidence supports a role for the endocannabinoid system (ECS) in atherosclerosis pathology which affects gut microbiota, but their effects on atherosclerosis are controversial. Therefore, we presented some evidence about the relationship between gut microbiota and ECS in atherosclerosis. We also presented evidences that gut microbiota modulation by pre/probiotics can have significant influence on the ECS.

Even though there are many questions which have been unanswered, studies demonstrated that mucosal barrier function disruption and subsequent gut microbiota-derived endotoxemia could contribute to cardiometabolic diseases pathogenesis. As well, number of studies revealed that TMAO in systemic circulation can activate macrophages which lead to cholesterol accumulation and subsequent foam cells formation in atherosclerotic lesions. On the other hand, accumulating evidence proposes that ECS involved in many physiological processes that are related to maintenance of gut-barrier function and inflammation regulation. Hence, although present literature review provides beneficial evidence in support of crosstalk between ECS and gut microbiota, additional studies are needed to clarify whether gut microbiota modulation can alter ECS tone and inflammation levels or not.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203867/

Efficacy and Safety of Cannabidiol in Epilepsy: A Systematic Review and Meta-Analysis.

 Image result for drugs journal“Approximately one-third of patients with epilepsy presents seizures despite adequate treatment. Hence, there is the need to search for new therapeutic options. Cannabidiol (CBD) is a major chemical component of the resin of Cannabis sativa plant, most commonly known as marijuana. The anti-seizure properties of CBD do not relate to the direct action on cannabinoid receptors, but are mediated by a multitude of mechanisms that include the agonist and antagonist effects on ionic channels, neurotransmitter transporters, and multiple 7-transmembrane receptors. In contrast to tetra-hydrocannabinol, CBD lacks psychoactive properties, does not produce euphoric or intrusive side effects, and is largely devoid of abuse liability.

OBJECTIVE:

The aim of the study was to estimate the efficacy and safety of CBD as adjunctive treatment in patients with epilepsy using meta-analytical techniques.

METHODS:

Randomized, placebo-controlled, single- or double-blinded add-on trials of oral CBD in patients with uncontrolled epilepsy were identified. Main outcomes included the percentage change and the proportion of patients with ≥ 50% reduction in monthly seizure frequency during the treatment period and the incidence of treatment withdrawal and adverse events (AEs).

RESULTS:

Four trials involving 550 patients with Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) were included. The pooled average difference in change in seizure frequency during the treatment period resulted 19.5 [95% confidence interval (CI) 8.1-31.0; p = 0.001] percentage points between the CBD 10 mg and placebo groups and 19.9 (95% CI 11.8-28.1; p < 0.001) percentage points between the CBD 20 mg and placebo arms, in favor of CBD. The reduction in all-types seizure frequency by at least 50% occurred in 37.2% of the patients in the CBD 20 mg group and 21.2% of the placebo-treated participants [risk ratio (RR) 1.76, 95% CI 1.07-2.88; p = 0.025]. Across the trials, drug withdrawal for any reason occurred in 11.1% and 2.6% of participants receiving CBD and placebo, respectively (RR 3.54, 95% CI 1.55-8.12; p = 0.003) [Chi squared = 2.53, degrees of freedom (df) = 3, p = 0.506; I2 = 0.0%]. The RRs to discontinue treatment were 1.45 (95% CI 0.28-7.41; p = 0.657) and 4.20 (95% CI 1.82-9.68; p = 0.001) for CBD at the doses of 10 and 20 mg/kg/day, respectively, in comparison to placebo. Treatment was discontinued due to AEs in 8.9% and 1.8% of patients in the active and control arms, respectively (RR 5.59, 95% CI 1.87-16.73; p = 0.002). The corresponding RRs for CBD at the doses of 10 and 20 mg/kg/day were 1.66 (95% CI 0.22-12.86; p = 0.626) and 6.89 (95% CI 2.28-20.80; p = 0.001). AEs occurred in 87.9% and 72.2% of patients treated with CBD and placebo (RR 1.22, 95% CI 1.11-1.33; p < 0.001). AEs significantly associated with CBD were somnolence, decreased appetite, diarrhea, and increased serum aminotransferases.

CONCLUSIONS:

Adjunctive CBD in patients with LGS or DS experiencing seizures uncontrolled by concomitant anti-epileptic treatment regimens is associated with a greater reduction in seizure frequency and a higher rate of AEs than placebo.”

https://www.ncbi.nlm.nih.gov/pubmed/30390221

Brief Report: Cannabidiol-Rich Cannabis in Children with Autism Spectrum Disorder and Severe Behavioral Problems-A Retrospective Feasibility Study.

“Anecdotal evidence of successful cannabis treatment in autism spectrum disorder (ASD) are accumulating but clinical studies are lacking. This retrospective study assessed tolerability and efficacy of cannabidiol-rich cannabis, in 60 children with ASD and severe behavioral problems (age = 11.8 ± 3.5, range 5.0-17.5; 77% low functioning; 83% boys). Efficacy was assessed using the Caregiver Global Impression of Change scale. Adverse events included sleep disturbances (14%) irritability (9%) and loss of appetite (9%). One girl who used higher tetrahydrocannabinol had a transient serious psychotic event which required treatment with an antipsychotic. Following the cannabis treatment, behavioral outbreaks were much improved or very much improved in 61% of patients. This preliminary study supports feasibility of CBD-based cannabis trials in children with ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/30382443

https://link.springer.com/article/10.1007%2Fs10803-018-3808-2