Cortical surface morphology in long-term cannabis users: A multi-site MRI study.

 European Neuropsychopharmacology

“Cannabis exerts its psychoactive effect through cannabinoid receptors that are widely distributed across the cortical surface of the human brain. It is suggested that cannabis use may contribute to structural alterations across the cortical surface.

In a large, multisite dataset of 120 controls and 141 cannabis users, we examined whether differences in key characteristics of the cortical surface – including cortical thickness, surface area, and gyrification index were related to cannabis use characteristics, including (i) cannabis use vs. non-use, (ii) cannabis dependence vs. non-dependence vs. non-use, and (iii) early adolescent vs. late adolescent onset of cannabis use vs. non-use.

Our results revealed that cortical morphology was not associated with cannabis use, dependence, or onset age.

The lack of effect of regular cannabis use, including problematic use, on cortical structure in our study is contrary to previous evidence of cortical morphological alterations (particularly in relation to cannabis dependence and cannabis onset age) in cannabis users.

Careful reevaluation of the evidence on cannabis-related harm will be necessary to address concerns surrounding the long-term effects of cannabis use and inform policies in a changing cannabis regulation climate.”

https://www.ncbi.nlm.nih.gov/pubmed/30558823

https://www.sciencedirect.com/science/article/pii/S0924977X18319874?via%3Dihub

[Neonatal hypoxia-ischemia: cellular and molecular brain damage and therapeutic modulation of neurogenesis].

 

 

Image result for Rev Neurol journal

“Perinatal asphyxia remains a major cause of both mortality and neurological morbidity. Neonatal encephalopathy affects to 1-3/1,000 newborns, leading to significant brain damage and childhood disability.

The only standard therapy is moderate hypothermia, whose efficacy, despite proved, is limited, being partially effective.

The use of therapeutic agents such as erythropoietin and cannabinoids and mesenchymal stem cells have shown promising results in experimental models of perinatal asphyxia, being able of modulate neurogenesis, neuronal plasticity and neuroreparation processes after hypoxic-ischemic brain injury.”

https://www.ncbi.nlm.nih.gov/pubmed/30560986

Cannabinoid CB1 Receptor Antagonist Rimonabant Decreases Levels of Markers of Organ Dysfunction and Alters Vascular Reactivity in Aortic Vessels in Late Sepsis in Rats.

“Sepsis is a life-threatening condition with high mortality rates that is caused by dysregulation of the host response to infection. We previously showed that treatment with the cannabinoid CB1 receptor antagonist rimonabant reduced mortality rates in animals with sepsis that was induced by cecal ligation and puncture (CLP). This improvement in the survival rate appeared to be related to an increase in arginine vasopressin (AVP) levels 12 h after CLP.

The present study investigated the effects of rimonabant on organ dysfunction, hematologic parameters, and vascular reactivity in male Wistar rats with sepsis induced by CLP. Intraperitoneal treatment with rimonabant (10 mg/kg, 4 h after CLP) abolished the increase in the plasma levels of lactate, lactate dehydrogenase, glucose, and creatinine kinase MB without altering hematological parameters (i.e., leukopenia and a reduction of platelet counts). CLP increased plasma levels of nitrate/nitrite (NOx) and induced vasoconstriction in the tail artery. The treatment of CLP rats with rimonabant did not alter NOx production but reduced the vasoconstriction. Rimonabant also attenuated the hyperreactivity to AVP induced by CLP without affecting hyporesponsiveness to phenylephrine in aortic rings.

These results suggest that rimonabant reduces organ dysfunction during sepsis, and this effect may be related to AVP signaling in blood vessels. This effect may have contributed to the higher survival rate in rimonabant-treated septic animals.”

Selective Activation of Cannabinoid Receptor 2 Attenuates Myocardial Infarction via Suppressing NLRP3 Inflammasome.

“The administration of cannabinoid receptor 2 (CB2R) agonist has been reported to produce a cardioprotective effect against the pathogenesis and progression of myocardial infarction (MI).

Here in this study, we investigated the specific mechanism related to inflammatory suppression. JWH-133 was used for the activation of CB2R.

Taken together, we demonstrated for the first time the cardioprotective effect of CB2R agonist and its NLRP3 inflammasome-related mechanism in MI.”

Hemp (Cannabis sativa L.) Seed Phenylpropionamides Composition and Effects on Memory Dysfunction and Biomarkers of Neuroinflammation Induced by Lipopolysaccharide in Mice.

ACS Omega

“Hempseed has achieved a growing popularity in human nutrition, particularly regarding essential amino acids and fatty acids. The multiple positive attributes of hempseed have led to the further study of its constituents.

In this study, hempseed extract containing phenylpropionamides (TPA) was obtained and its chemical profile and content were obtained using high-performance liquid chromatography technology based on previous study.

The anti-neuroinflammatory effect of TPA extract was evaluated using a lipopolysaccharide (LPS)-induced mouse model. Fourteen phenylpropionamides (TPA) were identified in the obtained extract with a total content of 233.52 ± 2.50 μg/mg extract.

In mice, TPA prevented the learning and spatial memory damage induced by LPS. Increased brain levels of IL-1β, IL-6, and TNF-α in the LPS-induced mice were reduced by TPA treatment. Furthermore, TPA attenuated LPS-induced hippocampal neuronal damage in mice.

This study demonstrates the nutraceutical potential of hempseed from a neuroprotective perspective.”

https://www.ncbi.nlm.nih.gov/pubmed/30556022

https://pubs.acs.org/doi/10.1021/acsomega.8b02250

Use of marijuana exclusively for medical purposes.

Drug and Alcohol Dependence

“To characterize the socio-demographic characteristics, medical conditions, and psychiatric comorbidities of users of marijuana for medical and non-medical purposes.

RESULTS:

In relation to non-medical only users (n = 3339), combined (n = 362) and medical only (n = 82) users had higher prevalence of every medical condition examined. As compared to the combined use group, those using marijuana only for medical purposes were much less likely to have anxiety, alcohol, or non-medical prescription opioid use disorders.

CONCLUSIONS:

Medical-only users appear to use it for evidence-based medical reasons and have lower prevalence of substance use disorder than other marijuana users. Nonetheless, because most medical marijuana users also use non-medically, screening for psychiatric disorders and prevention efforts for cannabis use disorder should be implemented when authorizing medical marijuana.”

https://www.ncbi.nlm.nih.gov/pubmed/30557813

https://www.sciencedirect.com/science/article/pii/S0376871618305660?via%3Dihub

Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial.

The Lancet Neurology

“Spasticity is a major determinant of disability and decline in quality of life in patients with motor neuron disease.

Cannabinoids have been approved for symptomatic treatment of spasticity in multiple sclerosis. We investigated whether cannabinoids might also reduce spasticity in patients with motor neuron disease.

Nabiximols was well tolerated, and no participants withdrew from the double-blind phase of the study. No serious adverse effects occurred.

INTERPRETATION:

In this proof-of-concept trial, nabiximols had a positive effect on spasticity symptoms in patients with motor neuron disease and had an acceptable safety and tolerability profile.”

https://www.ncbi.nlm.nih.gov/pubmed/30554828

https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(18)30406-X/fulltext

Medical Cannabis.

Mayo Clinic

“Medicolegal realities surrounding “medical marijuana” or “medical cannabis” are rapidly evolving in the United States. Clinicians are increasingly being asked by patients to share information about or certify them for medical cannabis. In order to engage in informed discussions with patients or be comfortable certifying them in states with medical cannabis laws, clinicians may benefit from an understanding of the current state of medical knowledge about medical cannabis. Intended for the generalist and subspecialist, this review provides an overview of the legal status, pharmacology, benefits, risks, and abuse liability of medical cannabis along with a general framework for counseling patients.”

Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus.

 Scientific Reports

“Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Staphylococcal biofilms are associated with increased antimicrobial resistance and are generally less affected by host immune factors. Therefore, there is an urgent need for novel agents that not only aim at multidrug-resistant pathogens, but also ones that will act as anti biofilms. In the present study, we investigated the antimicrobial activity of the endocannabinoid (EC) anandamide (AEA) and the endocannabinoid-like (EC-like), arachidonoyl serine (AraS) against methicillin resistant S. aureus strains (MRSA). We observed a strong inhibition of biofilm formation of all tested MRSA strains as well as a notable reduction of metabolic activity of pre-formed MRSA biofilms by both agents. Moreover, staphylococcal biofilm-associated virulence determinants such as hydrophobicity, cell aggregation and spreading ability were altered by AEA and AraS. In addition, the agents were able to modify bacterial membrane potential. Importantly, both compounds prevent biofilm formation by altering the surface of the cell without killing the bacteria. Therefore, we propose that EC and EC-like compounds may act as a natural line of defence against MRSA or other antibiotic resistant bacteria. Due to their anti biofilm action these agents could also be a promising alternative to antibiotic therapeutics against biofilm-associated MRSA infections.”

https://www.ncbi.nlm.nih.gov/pubmed/30523307

https://www.nature.com/articles/s41598-018-35793-7

“Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.”  https://www.ncbi.nlm.nih.gov/pubmed/30120078

“Antimicrobial Activity of Cannabis sativa L.”  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123

“Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.).” https://www.ncbi.nlm.nih.gov/pubmed/19969046

“Antimicrobial studies of the leaf of cannabis sativa L.”   https://www.ncbi.nlm.nih.gov/pubmed/16414764

The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target.

Prostaglandins, Leukotrienes and Essential Fatty Acids Home

“The endocannabinoids anandamide (AEA) and 2-arachidonoylglyerol (2-AG) are endogenous lipid mediators that exert protective roles in pathophysiological conditions, including cardiovascular diseases. In this brief review, we provide a conceptual framework linking endocannabinoid signaling to the control of the cellular and molecular hallmarks, and categorize the key components of endocannabinoid signaling that may serve as targets for novel therapeutics. The emerging picture not only reinforces endocannabinoids as potent regulators of cellular metabolism but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.”

https://www.ncbi.nlm.nih.gov/pubmed/30553404

https://www.plefa.com/article/S0952-3278(18)30176-5/fulltext