Activation of cannabinoid 2 receptor relieves colonic hypermotility in a rat model of irritable bowel syndrome.

Neurogastroenterology & Motility banner

“Irritable bowel syndrome (IBS) is a common disease with intestinal dysmotility, whose mechanism remains elusive.

The endocannabinoid system is emerging as an important modulator of gastrointestinal (GI) motility in multiple diseases, but its involvement in IBS is unknown.

We aimed to determine whether cannabinoid 2 (CB2) receptor modulates intestinal motility associated with stress-induced IBS.

CONCLUSION:

CB2 receptor may exert an important inhibitory effect in stress-induced colonic hypermotility by modulating NO synthesis through p38 mitogen-activated protein kinase signaling. AM1241 could be used as a potential drug to treat disorders with colonic hypermotility.”

https://www.ncbi.nlm.nih.gov/pubmed/30793435

https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.13555

DMH-cannabidiol, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity by activating A2A receptor and inhibiting p38.

Toxicology and Applied Pharmacology

“Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a μM concentration range: CBD (IC50 = 15 μM) and DMH-CBD (IC50 = 38 μM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 μM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2Aantagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduced the NF-kB activity at concentrations intimately associated with the reduction in cell viability, DMH-CBD reduce the NF-kB activity and by activating A2A receptors and inhibits p38 phosphorylation.”

https://www.ncbi.nlm.nih.gov/pubmed/30796934

https://www.sciencedirect.com/science/article/pii/S0041008X19300663?via%3Dihub

The Endocannabinoid System, Our Universal Regulator

Image result for journal of young investigators

“The endocannabinoid system (ECS) plays a very important role in the human body for our survival. This is due to its ability to play a critical role in maintaining the homeostasis of the human body, which encompasses the brain, endocrine, and immune system, to name a few. ECS is a unique system in multiple dimensions.

To begin with, it is a retrograde system functioning post- to pre-synapse, allowing it to be a “master regulator” in the body. Secondly, it has a very wide scope of influence due to an abundance of cannabinoid receptors located anywhere from immune cells to neurons. Finally, cannabinoids are rapidly synthesized and degraded, so they do not stay in the body for very long in high amounts, possibly enabling cannabinoid therapy to be a safer alternative to opioids or benzodiazepines. This paper will discuss how ECS functions through the regulation of neurotransmitter function, apoptosis, mitochondrial function, and ion-gated channels. The practical applications of the ECS, as well as the avenues for diseases such as epilepsy, cancer, amyotrophic lateral sclerosis (ALS), and autism, which have no known cure as of now, will be explored.

The ECS is one of the, if not the most, important systems in our body. Its role in the homeostatic function of our body is undeniable, and its sphere of influence is incredible. Additionally, it also plays a major role in apoptotic diseases, mitochondrial function, and brain function.

Its contribution is more than maintaining homeostasis; it also has a profound ability in regulation. Working in a retrograde fashion and with a generally inhibitory nature, ECS can act as a “kill switch.” However, it has been shown to play an inhibitory or stimulatory role based on the size of the influx of cannabinoids, resulting in a bimodal regulation. Furthermore, due to the nature of the rate of degradation of cannabinoids, it does not have as many long-term side effects as most of the current drugs on the market.

The ECS may not only provide answers for diseases with no known cures, but it could change the way we approach medicine. This system would allow us to change our focus from invasive pharmacological interventions (i.e. SSRIs for depression, benzodiazepines for anxiety, chemotherapies for cancer) to uncovering the mystery of why the body is failing to maintain homeostasis. Understanding the roles of ECS in these diseases confers a new direction for medicine which may eradicate the use of some of the less tolerable therapeutics.”

https://www.jyi.org/2018-june/2018/6/1/the-endocannabinoid-system-our-universal-regulator

The Association between Cannabis Product Characteristics and Symptom Relief

Scientific Reports

“Across product characteristics, only higher THC levels were independently associated with greater symptom relief and prevalence of positive and negative side effects. In contrast, CBD potency levels were generally not associated with significant symptom changes or experienced side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30804402

https://www.nature.com/articles/s41598-019-39462-1

“Notorious psychoactive chemical THC more important for therapeutic effects in cannabis than previously believed. Contrary to popular media-reports and scientific dogma, the psychoactive chemical, tetrahydrocannabinol or “THC,” showed the strongest correlation with therapeutic relief and far less evidence for the benefits of relying on the more socially acceptable chemical, cannabidiol or “CBD.””  https://news.unm.edu/news/notorious-psychoactive-chemical-thc-more-important-for-therapeutic-effects-in-cannabis-than-previously-believed

“THC more important for therapeutic effects in cannabis than previously believed”  https://medicalxpress.com/news/2019-02-thc-important-therapeutic-effects-cannabis.html

“THC found more important for therapeutic effects in cannabis than originally thought” https://www.sciencedaily.com/releases/2019/02/190226112353.htm

“Study: Patients Find More Relief In Marijuana‘s Physchoactive Compound THC Than In CBD.https://www.forbes.com/sites/javierhasse/2019/02/27/study-patients-find-more-relief-in-marijuanas-physchoactive-compound-thc-than-in-cbd/#384ee158717a

Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and γ-irradiation in human glioblastoma cells.

Related image“Despite advances in glioblastoma (GBM) therapy, prognosis of the disease remains poor with a low survival rate.

Cannabidiol (CBD) can induce cell death and enhance radiosensitivity of GBM but not normal astrocytes.

Inhibition of ATM kinase is an alternative mechanism for radiosensitization of cancer cells.

In this study, we increased the cytotoxic effects of the combination of CBD and γ-irradiation in GBM cells through additional inhibition of ATM kinase with KU60019, a small molecule inhibitor of ATM kinase.

We observed in GBM cells treated by CBD, γ-irradiation and KU60019 high levels of apoptosis together with strong upregulation of the percentage of G2/M-arrested cells, blockade of cell proliferation and a massive production of pro-inflammatory cytokines.

Overall, these changes caused both apoptotic and non-apoptotic inflammation-linked cell death. Furthermore, via JNK-AP1 activation in concert with active NF-κB, CBD upregulated gene and protein expression of DR5/TRAIL-R2 and sensitize GBM cells to TRAIL-induced apoptosis. In contrast, CBD notably decreased in GBM surface levels of PD-L1, a critical immune checkpoint agent for T-lymphocytes. We also used in the present study TS543 human proneural glioma cells that were grown as spheroid culture. TS543 neurospheres exhibited dramatic sensitivity to CBD-mediated killing that was additionally increased in combination with γ-irradiation and KU60019.

In conclusion, treatment of human GBM by the triple combination (CBD, γ-irradiation and KU60019) could significantly increase cell death levels in vitro and potentially improve the therapeutic ratio of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30783513

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26582&path[]=82682

Cannabinoids: a new approach for pain control?

Image result for ovid journal

“To analyze available data related to the use of cannabinoids in medicine, with a special focus on pain management in cancer. The use of cannabis for medical purposes is growing but there are still numerous questions to be solved: effectiveness, safety, and specific indications.

RECENT FINDINGS:

There is considerable variation between countries in the approaches taken, reflecting a variety of historical and cultural factors and despite few randomized controlled studies using natural cannabinoids, there is a trend to state that the use of cannabis should be taken seriously as a potential treatment of cancer-related pain. Cannabidiol, a nontoxic phytocannabinoid with few side-effects is promising in various indications in medicine.

SUMMARY:

The endocannabinoid system is a potential therapeutic target. Cannabinoids may be considered as potential adjuvant in cancer-related pain management. Cannabidiol appears to be the drug of choice. Analgesic trial designs should evolve to get closer to real-life practice and to avoid biases.”

https://www.ncbi.nlm.nih.gov/pubmed/30789867

https://insights.ovid.com/crossref?an=00001622-900000000-00002

What are the psychological effects of using synthetic cannabinoids? A systematic review

 Image result for journal of psychopharmacology

“Synthetic cannabinoids are, typically, full agonists at the cannabinoid CB1 receptor, and therefore considerably more potent than natural cannabis and may have correspondingly more serious psychological effects.

The purpose of this study was to synthesise the available research on the psychological consequences of synthetic cannabinoid use.

 

Non-controlled, cross-sectional studies generally showed that synthetic cannabinoid users had lower performance on cognitive tasks and showed elevated symptomatology (e.g. paranoia) compared to both natural cannabis and non-cannabis users.

 

Acute synthetic cannabinoid use can result in a range of psychological outcomes and, when non-intoxicated, synthetic cannabinoid users appear to differ from natural cannabis and non-users on various affective and cognitive domains.”

https://www.ncbi.nlm.nih.gov/pubmed/30789300

https://journals.sagepub.com/doi/abs/10.1177/0269881119826592?journalCode=jopa

Preliminary results from a pilot study examining brain structure in older adult cannabis users and nonusers.

Cover image Psychiatry Research: Neuroimaging

“Exploring associations among cannabis use, brain structure, and cognitive function in older adults offers an opportunity to observe potential harm or benefit of cannabis.

This pilot study assessed structural magnetic resonance imaging in older adults who were either current cannabis users (n = 28; mean age 69.8 years, 36% female) or nonusers (n = 28; mean age 66.8 years, 61% female).

Users and nonusers did not differ in terms of total gray or white matter volumes controlling for age and depression symptoms, but users showed greater regional volume of left putamen, lingual cortex, and rostral middle frontal cortex.

No significant differences between groups were observed in performance on a brief computerized cognitive battery.

These results suggest that cannabis use likely does not have a widespread impact on overall cortical volume while controlling for age.”

https://www.ncbi.nlm.nih.gov/pubmed/30785022

https://www.sciencedirect.com/science/article/pii/S0925492718302683?via%3Dihub

Cannabis use in youth is associated with limited alterations in brain structure

Image result for neuropsychopharmacology

“There were no significant differences by cannabis group in global or regional brain volumes, cortical thickness, or gray matter density, and no significant group by age interactions were found. Follow-up analyses indicated that values of structural neuroimaging measures by cannabis group were similar across regions, and any differences among groups were likely of a small magnitude. In sum, structural brain metrics were largely similar among adolescent and young adult cannabis users and non-users. Our data converge with prior large-scale studies suggesting small or limited associations between cannabis use and structural brain measures in youth.”

https://www.ncbi.nlm.nih.gov/pubmed/30780151

https://www.nature.com/articles/s41386-019-0347-2

Activation of ATP-sensitive K-channel promotes the anticonvulsant properties of cannabinoid receptor agonist through mitochondrial ATP level reduction.

“Cannabinoid receptor (CBR) agonist could act as a protective agent against seizure susceptibility in animal models of epilepsy.

Studies have shown that potassium channels could play a key role in ameliorating neuronal excitability.

In this study, we attempted to evaluate how CBRs and Adenosine Tri-Phosphate (ATP)-sensitive potassium channels collaborate to affect seizure susceptibility by changing the clonic seizure threshold (CST).

In conclusion, CB1 agonist accomplishes at least a part of its anticonvulsant actions through ATP-sensitive potassium channels, probably by decreasing the mitochondrial ATP level to open the potassium channel to induce its anticonvulsant effect.”

https://www.ncbi.nlm.nih.gov/pubmed/30776677

https://linkinghub.elsevier.com/retrieve/pii/S1525505018308503