Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol.

Publication cover image

“Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality.

Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss.

We recently established that the non-psychoactive phytocannabinoid (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin.

RESULTS:

CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Ŷ=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Ŷ=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment.

CONCLUSIONS:

Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.”

https://www.ncbi.nlm.nih.gov/pubmed/31035309

Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.”
“Cannabigerol displayed significant antitumor activity.” https://link.springer.com/article/10.1007/BF02976895
Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Cannabigerol exhibited the highest growth-inhibitory activity against the cancer cell lines.” https://www.ncbi.nlm.nih.gov/pubmed/9875457

Aging circadian rhythms and cannabinoids.

Neurobiology of Aging

“Numerous aspects of mammalian physiology exhibit cyclic daily patterns known as circadian rhythms. However, studies in aged humans and animals indicate that these physiological rhythms are not consistent throughout the life span. The simultaneous development of disrupted circadian rhythms and age-related impairments suggests a shared mechanism, which may be amenable to therapeutic intervention.

Recently, the endocannabinoid system has emerged as a complex signaling network, which regulates numerous aspects of circadian physiology relevant to the neurobiology of aging.

Agonists of cannabinoid receptor-1 (CB1) have consistently been shown to decrease neuronal activity, core body temperature, locomotion, and cognitive function. Paradoxically, several lines of evidence now suggest that very low doses of cannabinoids are beneficial in advanced age.

One potential explanation for this phenomenon is that these drugs exhibit hormesis-a biphasic dose-response wherein low doses produce the opposite effects of higher doses. Therefore, it is important to determine the dose-, age-, and time-dependent effects of these substances on the regulation of circadian rhythms and other processes dysregulated in aging.

This review highlights 3 fields-biological aging, circadian rhythms, and endocannabinoid signaling-to critically assess the therapeutic potential of endocannabinoid modulation in aged individuals. If the hormetic properties of exogenous cannabinoids are confirmed, we conclude that precise administration of these compounds may bidirectionally entrain central and peripheral circadian clocks and benefit multiple aspects of aging physiology.”

https://www.ncbi.nlm.nih.gov/pubmed/31035036

https://www.sciencedirect.com/science/article/pii/S0197458019300867?via%3Dihub

Cannabidiol protects livers against nonalcoholic steatohepatitis induced by high-fat high cholesterol diet via regulating NF-κB and NLRP3 inflammasome pathway.

Publication cover image

“Cannabidiol (CBD), an abundant nonpsychoactive constituent of marijuana, has been reported previously to protect against hepatic steatosis.

In this study, we studied further the functions and mechanisms of CBD on liver inflammation induced by HFC diet.

Mice feeding an HFC diet for 8 weeks were applied to test the protective effect of CBD on livers. RAW264.7 cells were incubated with LPS + ATP ± CBD to study the mechanisms of the effect of CBD against inflammasome activation.

We found that CBD alleviated liver inflammation induced by HFC diet.

CBD significantly inhibited the nuclear factor-κappa B (NF-κB) p65 nuclear translocation and the activation of nucleotide-binding domain like receptor protein 3 (NLRP3) inflammasome both in vivo and in vitro studies, which lead to the reduction of the expression of inflammation-related factors in our studies.

In addition, Inhibitor of activation of NF-κB partly suppressed the NLRP3 inflammasome activation, while adding CBD further inhibited NF-κB activation and correspondingly suppressed the NLRP3 inflammasome activation in macrophages.

In conclusion, the suppression of the activation of NLRP3 inflammasome through deactivation of NF-κB in macrophages by CBD might be one mechanism of its anti-inflammatory function in the liver.”

https://www.ncbi.nlm.nih.gov/pubmed/31032942

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.28728

Pre- and post-conditioning treatment with an ultra-low dose of Δ9-tetrahydrocannabinol (THC) protects against pentylenetetrazole (PTZ)-induced cognitive damage.

Behavioural Brain Research

“Preconditioning, a phenomenon where a minor noxious stimulus protects from a subsequent more severe insult, and post-conditioning, where the protective intervention is applied following the insult, offer new insight into the neuronal mechanism(s) of neuroprotection and may provide new strategies for the prevention and treatment of brain damage. We have previously reported that a single administration of an extremely low dose of Δ(9)-tetrahydrocannabinol (THC; the psychoactive ingredient of marijuana) to mice induced minor long-lasting cognitive deficits.

In the present study we examined the possibility that such a low dose of THC will protect the mice from more severe cognitive deficits induced by the epileptogenic drug pentylenetetrazole (PTZ). THC (0.002 mg/kg, a dose that is 3-4 orders of magnitude lower than the doses that induce the conventional effects of THC) was administered 1-7 days before, or 1-3 days after the injection of PTZ (60 mg/kg). The consequences of this treatment were studied 3-7 weeks later by various behavioral tests that evaluated different aspects of memory and learning.

We found that a single administration of THC either before or after PTZ abolished the PTZ-induced long-lasting cognitive deficits.

Biochemical studies indicated a concomitant reduction in phosphorylated-ERK (extracellular signal-regulated kinase) in the cerebella of mice 7 weeks following the injection of THC.

Our results suggest that a pre- or post-conditioning treatment with extremely low doses of THC, several days before or after brain injury, may provide safe and effective long-term neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/21315768

https://www.sciencedirect.com/science/article/pii/S0166432811001094?via%3Dihub

The Endocannabinoid System Is Present in Rod Outer Segments from Retina and Is Modulated by Light.

“The aim of the present research was to evaluate if the endocannabinoid system (enzymes and receptors) could be modulated by light in rod outer segment (ROS) from bovine retina. First, we analyzed endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in purified ROS obtained from dark-adapted (DROS) or light-adapted (LROS) retinas. To this end, diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL), and lysophosphatidate phosphohydrolase (LPAP) enzymatic activities were analyzed using radioactive substrates. The protein content of these enzymes and of the receptors to which cannabinoids bind was determined by immunoblotting under light stimulus. Our results indicate that whereas DAGL and MAGL activities were stimulated in retinas exposed to light, no changes were observed in LPAP activity. Interestingly, the protein content of the main enzymes involved in 2-AG metabolism, phospholipase C β1 (PLCβ1), and DAGLα (synthesis), and MAGL (hydrolysis), was also modified by light. PLCβ1 content was increased, while that of lipases was decreased. On the other hand, light produced an increase in the cannabinoid receptors CB1 and CB2 and a decrease in GPR55 protein levels. Taken together, our results indicate that the endocannabinoid system (enzymes and receptors) depends on the illumination state of the retina, suggesting that proteins related to phototransduction phenomena could be involved in the effects observed.”

https://www.ncbi.nlm.nih.gov/pubmed/31016476

https://link.springer.com/article/10.1007%2Fs12035-019-1603-5

Structural Insights into CB1 Receptor Biased Signaling.

ijms-logo

“The endocannabinoid system has emerged as a promising target for the treatment of numerous diseases, including cancer, neurodegenerative disorders, and metabolic syndromes. Thus far, two cannabinoid receptors, CB1 and CB2, have been discovered, which are found predominantly in the central nervous system (CB1) or the immune system (CB2), among other organs and tissues. CB1 receptor ligands have been shown to induce a complex pattern of intracellular effects. The binding of a ligand induces distinct conformational changes in the receptor, which will eventually translate into distinct intracellular signaling pathways through coupling to specific intracellular effector proteins. These proteins can mediate receptor desensitization, trafficking, or signaling. Ligand specificity and selectivity, complex cellular components, and the concomitant expression of other proteins (which either regulate the CB1 receptor or are regulated by the CB1 receptor) will affect the therapeutic outcome of its targeting. With an increased interest in G protein-coupled receptors (GPCR) research, in-depth studies using mutations, biological assays, and spectroscopic techniques (such as NMR, EPR, MS, FRET, and X-ray crystallography), as well as computational modelling, have begun to reveal a set of concerted structural features in Class A GPCRs which relate to signaling pathways and the mechanisms of ligand-induced activation, deactivation, or activity modulation. This review will focus on the structural features of the CB1 receptor, mutations known to bias its signaling, and reported studies of CB1 receptor ligands to control its specific signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/31013934

https://www.mdpi.com/1422-0067/20/8/1837

Cannabinoid Regulation of Fear and Anxiety: an Update.

 

“Anxiety- and trauma-related disorders are prevalent and debilitating mental illnesses associated with a significant socioeconomic burden. Current treatment approaches often have inadequate therapeutic responses, leading to symptom relapse. Here we review recent preclinical and clinical findings on the potential of cannabinoids as novel therapeutics for regulating fear and anxiety.

RECENT FINDINGS:

Evidence from preclinical studies has shown that the non-psychotropic phytocannabinoid cannabidiol and the endocannabinoid anandamide have acute anxiolytic effects and also regulate learned fear by dampening its expression, enhancing its extinction and disrupting its reconsolidation. The findings from the relevant clinical literature are still very preliminary but are nonetheless encouraging. Based on this preclinical evidence, larger-scale placebo-controlled clinical studies are warranted to investigate the effects of cannabidiol in particular as an adjunct to psychological therapy or medication to determine its potential utility for treating anxiety-related disorders in the future.”

https://www.ncbi.nlm.nih.gov/pubmed/31030284

https://link.springer.com/article/10.1007%2Fs11920-019-1026-z

Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects.

Materials Science and Engineering: C

“Recruitment of mesenchymal stem cells (MSCs) to an injury site and their differentiation into the desired cell lineage are implicated in deficient bone regeneration. To date, there is no ideal structure that provides these conditions for bone regeneration. In the current study, we aim to develop a novel scaffold that induces MSC migration towards the defect site, followed by their differentiation into an osteogenic lineage. We have fabricated a gelatin/nano-hydroxyapatite (G/nHAp) scaffold that delivered cannabidiol (CBD)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres to critical size radial bone defects in a rat model. The fabricated scaffolds were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and then analyzed for porosity and degradation rate. The release profile of CBD from the PLGA microsphere and CBD-PLGA-G/nHAp scaffold was analyzed by fluorescence spectroscopy. We performed an in vitro assessment of the effects of CBD on cellular behaviors of viability and osteogenic differentiation. Radiological evaluation, histomorphometry, and immunohistochemistry (IHC) analysis of all defects in the scaffold and control groups were conducted following transplantation into the radial bone defects. An in vitro migration assay showed that CBD considerably increased MSCs migration. qRT-PCR results showed upregulated expression of osteogenic markers in the presence of CBD. Histological and immunohistochemical findings confirmed new bone formation and reconstruction of the defect at 4 and 12 week post-surgery (WPS) in the CBD-PLGA-G/nHAp group. Immunofluorescent analysis revealed enhanced migration of MSCs into the defect areas in the CBD-PLGA-G/nHAp group in vivo. Based on the results of the current study, we concluded that CBD improved bone healing and showed a critical role for MSC migration in the bone regeneration process.”

https://www.ncbi.nlm.nih.gov/pubmed/31029357

https://www.sciencedirect.com/science/article/pii/S0928493118303606?via%3Dihub

Dissociable effects of cannabis with and without cannabidiol on the human brain’s resting-state functional connectivity.

Image result for journal of psychopharmacology

“Two major constituents of cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is the main psychoactive component; CBD may buffer the user against the harmful effects of THC.

AIMS:

We examined the effects of two strains of cannabis and placebo on the human brain’s resting-state networks using fMRI.

CONCLUSIONS:

THC disrupts the DMN, and the PCC is a key brain region involved in the subjective experience of THC intoxication. CBD restores disruption of the salience network by THC, which may explain its potential to treat disorders of salience such as psychosis and addiction.”

https://www.ncbi.nlm.nih.gov/pubmed/31013455

https://journals.sagepub.com/doi/abs/10.1177/0269881119841568?journalCode=jopa

“CBD in cannabis could reduce psychosis risk from high strength skunk, study shows. Buffer effect could point to a protective mechanism that may help ‘treat disorders like psychosis and addiction’. Cannabidiol (CBD), a chemical derived from the cannabis plant, can counteract the effects of high strength “skunk” strains and may help to reduce the risk of serious mental health conditions like psychosis, according to a new study.” https://www.independent.co.uk/news/health/cannabis-skunk-cbd-thc-psychosis-addiction-ucl-a8882991.html

Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox-Gastaut syndrome or Dravet syndrome: Expanded access program results.

Epilepsy Research

“Since 2014, patients with severe treatment-resistant epilepsies (TREs) have been receiving add-on cannabidiol (CBD) in an ongoing, expanded access program (EAP), which closely reflects clinical practice.

We conducted an interim analysis of long-term efficacy and tolerability in patients with Lennox-Gastaut syndrome (LGS) or Dravet syndrome (DS) who received CBD treatment through December 2016.

CONCLUSIONS:

Results from this interim analysis support add-on CBD as an effective long-term treatment option in LGS or DS.”

https://www.ncbi.nlm.nih.gov/pubmed/31022635

https://www.sciencedirect.com/science/article/pii/S0920121118305837?via%3Dihub