Cannabinoid interventions for PTSD: Where to next?

Progress in Neuro-Psychopharmacology and Biological Psychiatry

“Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/30946942

https://www.sciencedirect.com/science/article/pii/S027858461930034X?via%3Dihub

Don’t Fear the Reefer-Evidence Mounts for Plant-Based Cannabidiol as Treatment for Epilepsy.

SAGE Journals

“Cannabidiol has been used for treatment-resistant seizures in patients with severe early-onset epilepsy. We investigated the efficacy and safety of cannabidiol added to a regimen of conventional antiepileptic medication to treat drop seizures in patients with the Lennox-Gastaut syndrome, a severe developmental epileptic encephalopathy.

METHODS:

In this double-blind, placebo-controlled trial conducted at 30 clinical centers, we randomly assigned patients with the Lennox-Gastaut syndrome (age range, 2-55 years) who had had 2 or more drop seizures per week during a 28-day baseline period to receive cannabidiol oral solution at a dose of 20 mg/kg of body weight (20-mg cannabidiol group) or 10 mg/kg (10-mg cannabidiolgroup) or matching placebo, administered in 2 equally divided doses daily for 14 weeks. The primary outcome was the percentage change from baseline in the frequency of drop seizures (average per 28 days) during the treatment period.

RESULTS:

A total of 225 patients were enrolled; 76 patients were assigned to the 20-mg cannabidiol group, 73 to the 10-mg cannabidiol group, and 76 to the placebo group. During the 28-day baseline period, the median number of drop seizures was 85 in all trial groups combined. The median percentage reduction from baseline in drop seizure frequency during the treatment period was 41.9% in the 20-mg cannabidiol group, 37.2% in the 10-mg cannabidiol group, and 17.2% in the placebo group ( P = .005 for the 20-mg cannabidiol group vs placebo group, and P = .002 for the 10-mg cannabidiol group vs placebo group). The most common adverse events among the patients in the cannabidiol groups were somnolence, decreased appetite, and diarrhea; these events occurred more frequently in the higher dose group. Six patients in the 20-mg cannabidiol group and 1 patient in the 10-mg cannabidiol group discontinued the trial medication because of adverse events and were withdrawn from the trial. Fourteen patients who received cannabidiol (9%) had elevated liver aminotransferase concentrations.

CONCLUSIONS:

Among children and adults with the Lennox-Gastaut syndrome, the addition of cannabidiol at a dose of 10 or 20 mg/kg/d to a conventional antiepileptic regimen resulted in greater reductions in the frequency of drop seizures than placebo. Adverse events with cannabidiol included elevated liver aminotransferase concentrations. (Funded by GW Pharmaceuticals; GWPCARE3 ClinicalTrials.gov number, NCT02224560.) Long-Term Safety and Treatment Effects of Cannabidiol in Children and Adults With Treatment-Resistant Epilepsies: Expanded Access Program Results Szaflarski JP, Bebin EM, Comi AM, et al; CBD EAP Study Group. Epilepsia. 2018;59(8):1540-1548.

OBJECTIVE:

Since 2014, cannabidiol (CBD) has been administered to patients with treatment-resistant epilepsies (TREs) in an ongoing expanded access program (EAP). We report interim results on the safety and efficacy of CBD in EAP patients treated through December 2016.

METHODS:

Twenty-five US-based EAP sites enrolling patients with TRE taking stable doses of antiepileptic drugs (AEDs) at baseline were included. During the 4-week baseline period, parents/caregivers kept diaries of all countable seizure types. Patients received oral CBD starting at 2 to 10 mg/kg/d, titrated to a maximum dose of 25 to 50 mg/kg/d. Patient visits were every 2 to 4 weeks through 16 weeks and every 2 to 12 weeks thereafter. Efficacy end points included the percentage change from baseline in median monthly convulsive and total seizure frequency and percentage of patients with ≥50%, ≥75%, and 100% reductions in seizures versus baseline. Data were analyzed descriptively for the efficacy analysis set and using the last-observation-carried-forward method to account for missing data. Adverse events (AEs) were documented at each visit.

RESULTS:

Of 607 patients in the safety data set, 146 (24%) withdrew; the most common reasons were lack of efficacy (89 [15%]) and AEs (32 [5%]). Mean age was 13 years (range, 0.4-62). Median number of concomitant AEDs was 3 (range, 0-10). Median CBD dose was 25 mg/kg/d; median treatment duration was 48 weeks. Add-on CBD reduced median monthly convulsive seizures by 51% and total seizures by 48% at 12 weeks; reductions were similar through 96 weeks. Proportion of patients with ≥50%, ≥75%, and 100% reductions in convulsive seizures were 52%, 31%, and 11%, respectively, at 12 weeks, with similar rates through 96 weeks. Cannabidiol was generally well tolerated; most common AEs were diarrhea (29%) and somnolence (22%).

SIGNIFICANCE:

Results from this ongoing EAP support previous observational and clinical trial data, showing that add-on CBD may be an efficacious long-term treatment option for TRE. Randomized, Dose-Ranging Safety Trial of Cannabidiol in Dravet Syndrome Devinsky O, Patel AD, Thiele EA, et al; GWPCARE1 Part A Study Group. Neurology. 2018;90(14):e1204-e1211.

OBJECTIVE:

To evaluate the safety and preliminary pharmacokinetics of a pharmaceutical formulation of purified cannabidiol (CBD) in children with Dravet syndrome.

METHODS:

Patients aged 4 to 10 years were randomized 4:1 to CBD (5, 10, or 20 mg/kg/d) or placebo taken twice daily. The double-blind trial comprised 4-week baseline, 3-week treatment (including titration), 10-day taper, and 4-week follow-up periods. Completers could continue in an open-label extension. Multiple pharmacokinetic blood samples were taken on the first day of dosing and at end of treatment for measurement of CBD, its metabolites 6-OH-CBD, 7-OH-CBD, and 7-COOH-CBD, and antiepileptic drugs (AEDs; clobazam and metabolite N-desmethylclobazam [N-CLB], valproate, levetiracetam, topiramate, and stiripentol). Safety assessments were clinical laboratory tests, physical examinations, vital signs, electrocardiograms, adverse events (AEs), seizure frequency, and suicidality.

RESULTS:

Thirty-four patients were randomized (10, 8, and 9 to the 5, 10, and 20 mg/kg/d CBD groups and 7 to placebo); 32 (94%) completed treatment. Exposure to CBD and its metabolites was dose proportional (AUC0-t). Cannabidiol did not affect concomitant AED levels, apart from an increase in N-CLB (except in patients taking stiripentol). The most common AEs on CBD were pyrexia, somnolence, decreased appetite, sedation, vomiting, ataxia, and abnormal behavior. Six patients taking CBD and valproate developed elevated transaminases; none met criteria for drug-induced liver injury and all recovered. No other clinically relevant safety signals were observed.

CONCLUSIONS:

Exposure to CBD and its metabolites increased proportionally with dose. An interaction with N-CLB was observed, likely related to CBD inhibition of cytochrome P450 subtype 2C19. Cannabidiol resulted in more AEs than placebo but was generally well tolerated.

CLASSIFICATION OF EVIDENCE:

This study provides class I evidence that for children with Dravet syndrome, CBD resulted in more AEs than placebo but was generally well tolerated.”

https://www.ncbi.nlm.nih.gov/pubmed/30955420

https://journals.sagepub.com/doi/10.1177/1535759719835671

Enhancing effects of acute exposure to cannabis smoke on working memory performance

 

Neurobiology of Learning and Memory

“Prior preclinical studies show that acute cannabinoid injections impair cognition.

Here, effects of cannabis smoke on working memory were tested in rats.

Cannabis smoke improved working memory accuracy.

Placebo smoke did not affect working memory accuracy.

Enhancing effects are likely due to THC dose and/or route of administration.”  https://www.sciencedirect.com/science/article/pii/S1074742718302776?via%3Dihub

“Numerous preclinical studies show that acute cannabinoid administration impairs cognitive performance. Almost all of this research has employed cannabinoid injections, however, whereas smoking is the preferred route of cannabis administration in humans. The goal of these experiments was to systematically determine how acute exposure to cannabis smoke affects working memory performance in a rat model.

Exposure to cannabis smoke had no effect on male rats’ performance, but surprisingly, enhanced working memory accuracy in females, which tended to perform less accurately than males under baseline conditions. In addition, cannabis smoke enhanced working memory accuracy in a subgroup of male rats that performed comparably to the worst-performing females. Exposure to placebo smoke had no effect on performance, suggesting that the cannabinoid content of cannabis smoke was critical for its effects on working memory.” https://www.ncbi.nlm.nih.gov/pubmed/30521850

 

Treatment of Fragile X Syndrome with Cannabidiol: A Case Series Study and Brief Review of the Literature.

View details for Cannabis and Cannabinoid Research cover image

“Fragile X syndrome (FXS) is an X-linked dominant disorder caused by a mutation in the fragile X mental retardation 1 gene.

Cannabidiol (CBD) is an exogenous phytocannabinoid with therapeutic potential for individuals with anxiety, poor sleep, and cognitive deficits, as well as populations with endocannabinoid deficiencies, such as those who suffer from FXS.

The objective of this study was to provide a brief narrative review of recent literature on endocannabinoids and FXS and to present a case series describing three patients with FXS who were treated with oral CBD-enriched (CBD+) solutions.

We review recent animal and human studies of endocannabinoids in FXS and present the cases of one child and two adults with FXS who were treated with various oral botanical CBD+ solutions delivering doses of 32.0 to 63.9 mg daily. Multiple experimental and clinical models of FXS combine to highlight the therapeutic potential of CBD for management of FXS.

All three patients described in the case series exhibited functional benefit following the use of oral CBD+ solutions, including noticeable reductions in social avoidance and anxiety, as well as improvements in sleep, feeding, motor coordination, language skills, anxiety, and sensory processing. Two of the described patients exhibited a reemergence of a number of FXS symptoms following cessation of CBD+ treatment (e.g., anxiety), which then improved again after reintroduction of CBD+ treatment. Findings highlight the importance of exploring the therapeutic potential of CBD within the context of rigorous clinical trials.”

“The present findings, coupled with the available preclinical data, highlight the potential for CBD as an intervention for individuals with FXS. The existing literature combines to demonstrate that CBD may positively impact individuals with FXS through many mechanisms, including the endocannabinoid system, GABA, and serotonin. While a number of drugs have been developed to target specific systems (e.g., GABA agonists), CBD has the potential to yield a multifaceted benefit to individuals with FXS due to its multiple mechanisms of action.”

Nutritional Value of Commercial Protein-Rich Plant Products

Image result for springer plant foods

“The goal of this work was to analyze nutritional value of various minimally processed commercial products of plant protein sources such as faba bean (Vicia faba), lupin (Lupinus angustifolius), rapeseed press cake (Brassica rapa/napus subsp. Oleifera), flaxseed (Linum usitatissimum), oil hemp seed (Cannabis sativa), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa). All the samples studied have a nutritionally favorable composition with significant health benefit potential. In conclusion, nearly all the samples studied could be considered as good sources of protein, minerals and dietary fiber.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956054/

Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome.

“Epilepsy is one of the most common chronic disorders of the brain affecting around 70 million people worldwide. Treatment is mainly symptomatic, and most patients achieve long-term seizure control. Up to one-third of the affected subjects, however, are resistant to anticonvulsant therapy.

Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are severe, refractory epilepsy syndromes with onset in early childhood. Currently available interventions fail to control seizures in most cases, and there remains the need to identify new treatments.

Cannabidiol (CBD) is the first in a new class of antiepileptic drugs. It is a major chemical of the cannabis plant, which has antiseizure properties in absence of psychoactive effects.

This article provides a critical review of the pharmacology of CBD and the most recent clinical studies that evaluated its efficacy and safety as adjunctive treatment of seizures associated with LGS and DS.”

https://www.ncbi.nlm.nih.gov/pubmed/30938373

https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summary_pr?p_JournalId=4&p_RefId=2909248&p_IsPs=N

Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons.

Neuropharmacology

“Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington’s disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoidsystem in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.”

https://www.ncbi.nlm.nih.gov/pubmed/30914306

https://www.sciencedirect.com/science/article/pii/S0028390819301066?via%3Dihub