Cannabis-based treatments as an alternative remedy for epilepsy

Integrative Medicine Research“Much of the initial reports for cannabis use in seizure control centered on the compound 9-Δ-tetrahydrocannabinol (THC). However, due to the psychoactive properties of THC potential utility was somewhat limited and recent research has focused on non-psychoactive compounds such as cannabidiol (CBD).

The anti-seizure effects of CBD may come from mechanisms such as functional agonism or antagonism at several 7-transmembrane receptors, ion channels, and neurotransmitter transporters.

Recently, another compound that also is without psychoactive effects known as CBDV has also shown anti-seizure properties both in vivo and in vitro.

Many reports exist on illicit cannabis use through the smoking of marijuana by patients as a self-treatment.

Cannabis and cannabis-based treatments offer promising alternatives to traditional antiepileptic drugs (AEDs).

Due to the unfortunate fact that many patients suffer from Drug-resistant epilepsy (DRE), cannabis-based treatments have great value.

Cannabis-based treatments offer some patients with DRE a great remedy for their condition with limited side effects.

This option may prevent some patients with DRE from needing to consider more invasive options such as surgical interventions. In case studies, open label studies, and RCTs, one can see drastic improvements in the frequency of seizures in patients with certain forms of epilepsy.

It is imperative to continue research into cannabis as a potential primary treatment for epilepsy, particularly those with DRE, to help improve quality of life for millions of people suffering from epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31463193

https://www.sciencedirect.com/science/article/pii/S221342201930157X?via%3Dihub

Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling.

Medical Hypotheses“The neurodegeneration, neuro-inflammation and mitochondrial dysfunction which occur by methamphetamine (METH) abuse or administration are serious and motivation therapeutic approaches for inhibition of these types of neurodegeneration. As we know, METH through Toll-like receptors (TLRs), specially type 4, and NF-κB signaling pathway causes neuro-inflammation and mitochondrial dysfunction.

Neuroprotective approach for management of METH-induced neurodegeneration, inflammation and mitochondrial dysfunction, through a novel neuroprotective agent is continuously being superior to any kind of other therapeutic strategy. Therefore, the clarification, introduction and development of efficacious novel neuroprotective agent are demanded. During recent years, using new neuroprotective agent with therapeutic probability for treatment of METH-induced neuro-inflammation and mitochondrial dysfunction has been astoundingly increased.

Previous studies have stated the neuroprotective and anti-inflammatory roles of cannabinoid derivate such as cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) in multiple neurodegenerative events and diseases.

According to literature cannabinoid derivate, by inhibition of TLR4 and activation of NF-κB signaling pathway, exerts their anti-inflammatory and neuroprotective effects and cause mitochondrial biogenesis. Thus we hypothesized that by using cannabinoids in METH dependent subject it would provide neuroprotection against METH-induced neurodegeneration, neuro-inflammation and mitochondrial dysfunction and probably can manage sequels of METH-induced neurochemical abuses via modulation of TLR4/NF-κB signaling pathway.

In this article, we tried to discuss our hypothesis regarding the possible role of CBD and Δ9-THC, as a potent neuroprotective and anti-inflammatory agents, in inhibition or treatment of METH-induced neurodegeneration, neuro-inflammation and mitochondrial dysfunction through its effects on TLR4/NF-κB signaling pathway.”

https://www.ncbi.nlm.nih.gov/pubmed/31465975

https://www.sciencedirect.com/science/article/abs/pii/S030698771930739X?via%3Dihub

Opioid-enhancing antinociceptive effects of delta-9-tetrahydrocannabinol and amitriptyline in rhesus macaques.

Cover image for Experimental and Clinical Psychopharmacology“Cannabinoids can enhance the antinociceptive effects of opioids in a synergistic manner, potentially reducing the analgesic dosage of opioids and improving pain therapy. This strategy has also been used as a rationale to combine certain antidepressants and opioids.

In this experiment, opioid-induced thermal antinociception was assessed in rhesus macaques using a warm-water tail-withdrawal procedure with 3 water temperatures (40, 50, and 55 °C). In general, the acute antinociceptive effects of intramuscular (i.m.) cumulative doses of heroin were studied alone or in combination with i.m. (-)-trans-delta-9-tetrahydrocannabinol (THC), cannabinol (CBN), or the tricyclic antidepressant amitriptyline.

A nonantinociceptive dose of THC (1 mg/kg) shifted the ED50 for the heroin dose-effect curve 3.6-fold leftward at 50 °C and 1.9-fold leftward at 55 °C compared with heroin alone. When the cannabinoid type-1 receptor (CB1R) antagonist, rimonabant, was administered prior to the most effective THC-heroin combination, rimonabant blocked the THC enhancement of heroin antinociception. When CBN (1-3.2 mg/kg) was administered prior to heroin, or 1 mg/kg of CBN was administered prior to a combination of 0.32 mg/kg of THC and heroin, no shifts were evident in the heroin dose-effect curves at either temperature.

However, similar to THC, amitriptyline (0.32-1 mg/kg) administered prior to heroin significantly shifted the heroin dose-effect curve leftward. Heroin produced both dose- and temperature-dependent thermal antinociception in nonhuman primates and THC produced opioid-enhancing effects in a CB1R-dependent manner. These effects of THC were not shared by cannabinol, but were quantitatively similar to that of amitriptyline.”

https://www.ncbi.nlm.nih.gov/pubmed/31464475

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fpha0000313

Δ8 -Tetrahydrocannabivarin has potent anti-nicotine effects in multiple rodent models of nicotine dependence.

British Journal of Pharmacology banner“Both types of cannabinoid receptors – CB1 and CB2 – regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs.

Δ9 -Tetrahydrocannabivarin (Δ9 -THCV) – a cannabis constituent – acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2agonist properties.

KEY RESULTS:

Δ8 -THCV significantly attenuated intravenous nicotine self-administration, and both cue-induced and nicotine-induced relapse to nicotine-seeking behavior in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice.

CONCLUSIONS AND IMPLICATIONS:

We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/31454413

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14844

Activation of Cannabinoid Receptors Promote Periodontal Cell Adhesion and Migration.

Journal of Clinical Periodontology banner“Medical and recreational cannabis use is increasing significantly, but its impacts on oral health remains unclear.

The aim of this study is to investigate the effects of tetrahydrocannabinol (THC), the major active component in cannabis, on periodontal fibroblast cell adhesion and migration to explore its role in periodontal regeneration and wound healing.

RESULTS:

Both CB1 and CB2 were expressed in periodontal tissues but with different expression patterns. THC promoted periodontal cell wound healing by inducing HPLF cell adhesion and migration. This was mediated by focal adhesion kinase (FAK) activation and its modulation of MAPK activities. The effect of cannabinoids on periodontal fibroblast cell adhesion and migration were mainly dependent on the CB2.

CONCLUSION:

These results suggested that cannabinoids may contribute to developing new therapeutics for periodontal regeneration and wound healing.”

https://www.ncbi.nlm.nih.gov/pubmed/31461164

https://onlinelibrary.wiley.com/doi/abs/10.1111/jcpe.13190

Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications.

European Journal of Pharmacology“The biological effects of endocannabinoid system are mediated by two types of receptors, cannabinoid 1 (CB1) and cannabinoid 2 receptor (CB2). They play a pivotal role in the management of pain, inflammation, cancer, obesity and diabetes mellitus.

CB2 receptor activity downregulation is hallmark of inflammation and oxidative stress. Strong evidence display the relation between activation of CB2 receptors with decrease in the pro-inflammatory cytokines and pro-apoptotic factors. Numerous in vitro and in vivo studies have been validated to confirm the role of CB2 receptor in the management of obesity, hyperlipidemia and diabetes mellitus by regulating glucose and lipid metabolism.

Activation of CB2 receptor has led to reduction of inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6), Nuclear factor kappa beta (NF-κβ) and also amelioration of reactive oxygen species and reactive nitrogen species playing role in apoptosis. Many studies confirmed the role of CB2 receptors in the insulin secretion via facilitating calcium entry into the pancreatic β-cells. CB2 receptors also displayed improvement in the neuronal and renal functions by decreasing the oxidative stress and downregulating inflammatory cascade.

The present review addresses, potential role of CB2 receptor activation in management of diabetes and its complications. It also includes the role of CB2 receptors as an anti-oxidant, anti-apoptotic and anti-inflammatory for the treatment of DM and its complications. Also, an informative summary of CB2 receptor agonist drugs is provided with their potential role in the reduction of glucose levels, increment in the insulin levels, decrease in the hyperglycaemic oxidative stress and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31461639

https://www.sciencedirect.com/science/article/pii/S0014299919305801?via%3Dihub

Cannabinoids and Mental Health, Part 1: The Endocannabinoid System and Exogenous Cannabinoids.

Image result for j psychosoc nurs ment health serv“The increasing public acceptance of cannabis and the proliferation of cannabis products in the marketplace has coincided with more patients using the drug as a substitute for psychiatric medications or as an adjunctive treatment modality for psychiatric conditions, despite limited evidence of efficacy. With a goal of furthering harm-reduction efforts in psychiatric nursing, the current article reviews the fundamentals of the endocannabinoid system in humans and the exogenous phytocannabinoids that act on this regulatory neurotransmitter system. The basics of cannabis botany are also reviewed to help nurse clinicians understand the heterogeneous nature of cannabis products. This foundational knowledge will help improve clinical interactions with patients who use cannabis and provide the necessary understanding of cannabinoids needed to undertake further scientific query into their purported benefits in psychiatric disease states.”

https://www.ncbi.nlm.nih.gov/pubmed/31461513

Impaired brain endocannabinoid tone in the activity-based model of anorexia nervosa.

International Journal of Eating Disorders banner“Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN.

These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31456239

https://onlinelibrary.wiley.com/doi/abs/10.1002/eat.23157

Dual Inhibition of Cannabinoid-1 Receptor and iNOS Attenuates Obesity-induced Chronic Kidney Disease.

British Journal of Pharmacology banner“Obesity, an important risk factor for developing chronic kidney disease (CKD), affects the kidneys by two main molecular signaling pathways: the endocannabinoid/CB1 R system, whose activation in obesity promotes renal inflammation, fibrosis, and injury; and the inducible nitric oxide synthase (iNOS), which generates reactive oxygen species resulting in oxidative stress. Hence, a combined peripheral inhibitory molecule that targets both CB1 R and iNOS may serve as an efficacious therapeutic agent against obesity-induced CKD.

KEY RESULTS:

Enhanced expression of CB1 R and iNOS in renal tubules was found in human kidney patients with obesity and other CKDs. The hybrid inhibitor ameliorated obesity-induced kidney morphological and functional changes via decreasing kidney inflammation, fibrosis, oxidative stress, and renal injury. Some of these features were independent of the improved metabolic profile mediated via inhibition of CB1 R. An additional interesting finding is that these beneficial effects on the kidney were partially associated with modulating renal adiponectin signaling.

CONCLUSIONS AND IMPLICATIONS:

Collectively, our results highlight the therapeutic relevance of blocking CB1 R and iNOS in ameliorating obesity-induced CKD.”

https://www.ncbi.nlm.nih.gov/pubmed/31454063

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14849

Use of Medicinal Cannabis and Synthetic Cannabinoids in Post-Traumatic Stress Disorder (PTSD): A Systematic Review.

medicina-logo“Post-traumatic stress disorder (PTSD) is a common psychiatric disorder resulting from a traumatic event, is manifested through hyperarousal, anxiety, depressive symptoms, and sleep disturbances.

Despite several therapeutic approaches being available, both pharmacological and psychological, recently a growing interest has developed in using cannabis and synthetic cannabinoids stems from their consideration as more efficient and better tolerated alternatives for the treatment of this condition.

The present paper aims to evaluate the clinical and therapeutic potentials of medical cannabis and synthetic cannabinoids in treating PTSD patients.

Present data show that cannabis and synthetic cannabinoids, both acting on the endocannabinoids system, may have a potential therapeutic use for improving PTSD symptoms, e.g., reducing anxiety, modulating memory-related processes, and improving sleep.”

https://www.ncbi.nlm.nih.gov/pubmed/31450833

https://www.mdpi.com/1010-660X/55/9/525