The synthetic cannabinoid dehydroxylcannabidiol restores the function of a major GABAA receptor isoform in a cell model of hyperekplexia.

 

Image result for journal of biological chemistry“The functions of the glycine receptor (GlyR) and γ-aminobutyric acid type A receptor (GABAAR) are both impaired in hyperekplexia, a neurological disorder that is usually caused by GlyR mutations.

Although emerging evidence indicates that cannabinoids can directly restore normal GlyR function, whether they affect the GABAAR in hyperekplexia remains unknown.

Here, we show that dehydroxylcannabidiol (DH-CBD), a synthetic nonpsychoactive cannabinoid, restores both the GABA- and glycine-activated currents (IGABA and IGly ) in HEK-293 cells co-expressing a major GABAAR isoform (α1β2γ2) and GlyRα1 carrying a human hyperekplexia-associated mutation (GlyRα1 R271Q). Using co-immunoprecipitation and FRET assays, we found that DH-CBD disrupts the protein interaction between GABAAR and GlyRα1 R271Q

Furthermore, a point mutation of GlyRα1, changing Ser-296 to Ala-296, which is critical for cannabinoid binding on GlyR, significantly blocked the DH-CBD-induced restoration of IGABA and IGly currents. This S296A substitution also considerably attenuated the DH-CBD-induced disruption of the interaction between GlyRα1 R271Q and GABAAR.

These findings suggest that because it restores the functions of both GlyRα1 and GABAAR, DH-CBD may represent a potentially valuable candidate drug to manage hyperekplexia.”

https://www.ncbi.nlm.nih.gov/pubmed/31757808

http://www.jbc.org/content/early/2019/11/22/jbc.RA119.011221

Does Integrative Medicine Reduce Prescribed Opioid Use for Chronic Pain? A Systematic Literature Review.

Image result for pain medicine journal“Chronic pain (CP) is a major public health problem. Many patients with CP are increasingly prescribed opioids, which has led to an opioid crisis.

Integrative medicine (IM), which combines pharmacological and complementary and alternative medicine (CAM), has been proposed as an opioid alternative for CP treatment.

The majority of the studies showed that opioid use was reduced significantly after using IM. Cannabinoids were among the most commonly investigated approaches in reducing opioid use, followed by multidisciplinary approaches, cognitive-behavioral therapy, and acupuncture. The majority of the studies had limitations related to sample size, duration, and study design.

CONCLUSIONS:

There is a small but defined body of literature demonstrating positive preliminary evidence that the IM approach including CAM therapies can help in reducing opioid use. As the opioid crisis continues to grow, it is vital that clinicians and patients be adequately informed regarding the evidence and opportunities for IM/CAM therapies for CP.”

https://www.ncbi.nlm.nih.gov/pubmed/31755962

https://academic.oup.com/painmedicine/advance-article-abstract/doi/10.1093/pm/pnz291/5637803?redirectedFrom=fulltext

Marijuana Use in Patients with Symptoms of Gastroparesis: Prevalence, Patient Characteristics, and Perceived Benefit.

“Marijuana may be used by some patients with gastroparesis (Gp) for its potential antiemetic, orexigenic, and pain-relieving effects.

The aim of this study was to describe the use of marijuana by patients for symptoms of Gp, assessing prevalence of use, patient characteristics, and patients’ perceived benefit on their symptoms of Gp.

RESULTS:

Fifty-nine of 506 (11.7%) patients with symptoms of Gp reported current marijuana use, being similar among patients with delayed and normal gastric emptying and similar in idiopathic and diabetic patients. Patients using marijuana were younger, more often current tobacco smokers, less likely to be a college graduate, married or have income > $50,000. Patients using marijuana had higher nausea/vomiting subscore (2.7 vs 2.1; p = 0.002), higher upper abdominal pain subscore (3.5 vs 2.9; p = 0.003), more likely to be using promethazine (37 vs 25%; p = 0.05) and dronabinol (17 vs 3%; p < 0.0001). Of patients using marijuana, 51% had been using it for more than 2 years, 47% were using this once or more per day, and 81% of marijuana users rated their benefit from marijuana as better or much better.

CONCLUSIONS:

A subset of patients (12%) with symptoms of Gp use marijuana. Patients with severe nausea and abdominal pain were more likely to use marijuana and perceive it to be beneficial for their symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/31758430

https://link.springer.com/article/10.1007%2Fs10620-019-05963-2

“Marijuana, Ondansetron, and Promethazine Are Perceived as Most Effective Treatments for Gastrointestinal Nausea”

https://pubmed.ncbi.nlm.nih.gov/32185665/

Cannabis Influences the Putative Cytokines-Related Pathway of Epilepsy among Egyptian Epileptic Patients.

brainsci-logo“The study aims to investigate: (1) the prevalence of cannabis among epileptic patients seen at Mansoura University Hospital, (2) serum levels and gene expression of cytokines in epilepsy patients and the controls. and (3) the possibility that cannabis use affects the cytokine levels in epilepsy patients, triggering its future use in treatment.

We recruited 440 epilepsy patients and 200 controls matched for age, gender, and ethnicity. Of the epileptic patients, 37.5% demonstrated lifetime cannabis use with a mean duration of 15 ± 73 years. Serum levels of interleukin IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α), were analyzed and gene expression analysis was conducted only for those cytokines that were different between groups in the serum analysis.

The “Epilepsy-only” patients had significantly higher serum and mRNA levels of IL-1α, β, IL-2,6,8, and TNF-α compared to the controls and the “Cannabis+Epilepsy” group (p = 0.0001). IL-10 showed significantly lower levels in the “Epilepsy-only” patients compared to the controls and “Cannabis+Epilepsy” (p = 0.0001). Cannabis use is prevalent among epilepsy patients.

Epilepsy is characterized by a pro-inflammatory state supported by high serum and gene expression levels.

Cannabis users demonstrated significantly lower levels of inflammatory cytokines compared to epilepsy non-cannabis users which might contribute to its use in the treatment of resistant epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31757102

https://www.mdpi.com/2076-3425/9/12/332

Investigating the causal effect of cannabis use on cognitive function with a quasi-experimental co-twin design.

Drug and Alcohol Dependence“It is unclear whether cannabis use causes cognitive decline; several studies show an association between cannabis use and cognitive decline, but quasi-experimental twin studies have found little support for a causal effect.

Here, we evaluate the association of cannabis use with general cognitive ability and executive functions (EFs) while controlling for genetic and shared environmental confounds in a longitudinal twin study.

CONCLUSIONS:

We found little support for a potential causal effect of cannabis use on cognition, consistent with previous twin studies. Results suggest that cannabis use may not cause decline in cognitive ability among a normative sample of cannabis users.”

https://www.ncbi.nlm.nih.gov/pubmed/31753729

“Overall, there was little evidence for causal effect of cannabis on cognition.”

https://www.sciencedirect.com/science/article/abs/pii/S0376871619304892?via%3Dihub

Association between cannabis and the eyelids: A comprehensive review.

Publication cover image“Cannabis is the most consumed illicit drug worldwide. As more countries consider bills that would legalize adult use of cannabis, health care providers, including eye care professionals (ophthalmologists, optometrists), will need to recognize ocular effects of cannabis consumption in patients.

There are only 20 studies on the eyelid effects of cannabis usage as a medical treatment or a recreational drug.

These include: ptosis induction, an “eyelid tremor” appearance and blepharospasm attenuation.

Six articles describe how adequately dosed cannabis regimens could be promising medical treatments for blepharospasm induced by psychogenic factors.

The exact mechanism of cannabinoids connecting cannabis to the eyelids is unclear.

Further studies should be conducted to better understand the cannabinoid system in relation to the eyelid and eventually develop new, effective and safe therapeutic targets derived from cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31747112

https://onlinelibrary.wiley.com/doi/abs/10.1111/ceo.13687

Effects of cannabidivarin (CBDV) on brain excitation and inhibition systems in adults with and without Autism Spectrum Disorder (ASD): a single dose trial during magnetic resonance spectroscopy.

Image result for translational psychiatry“Autism spectrum disorder (ASD) is a high cost neurodevelopmental condition; and there are currently no effective pharmacological treatments for its core symptoms. This has led some families and researchers to trial alternative remedies – including the non-intoxicating Cannabis sativa-derived compound cannabidivarin (CBDV). However, how CBDV affects the human brain is unknown.

Previous (pre)clinical evidence suggests that CBDV may modulate brain excitatory-inhibitory systems, which are implicated in ASD. Hence, our main aim was to test, for the first time, if CBDV shifts glutamate and/or GABA metabolites – markers of the brain’s primary excitatory and inhibitory system – in both the ‘typical’ and autistic brain.

Our subsidiary aim was to determine whether, within ASD, brain responsivity to CBDV challenge is related to baseline biological phenotype. We tested this using a repeated-measures, double-blind, randomized-order, cross-over design.

We used magnetic resonance spectroscopy (MRS) to compare glutamate (Glx = glutamate + glutamine) and GABA + (GABA + macromolecules) levels following placebo (baseline) and 600 mg CBDV in 34 healthy men with (n = 17) and without (n = 17) ASD. Data acquisition from regions previously reliably linked to ASD (dorsomedial prefrontal cortex, DMPFC; left basal ganglia, BG) commenced 2 h (peak plasma levels) after placebo/CBDV administration. Where CBDV significantly shifted metabolite levels, we examined the relationship of this change with baseline metabolite levels. Test sessions were at least 13 days apart to ensure CBDV wash-out. CBDV significantly increased Glx in the BG of both groups. However, this impact was not uniform across individuals. In the ASD group, and not in the typically developing controls, the ‘shift’ in Glx correlated negatively with baseline Glx concentration. In contrast, CBDV had no significant impact on Glx in the DMPFC, or on GABA+ in either voxel in either group.

Our findings suggest that, as measured by MRS, CBDV modulates the glutamate-GABA system in the BG but not in frontal regions. Moreover, there is individual variation in response depending on baseline biochemistry. Future studies should examine the effect of CBDV on behaviour and if the response to an acute dose of CBDV could predict a potential clinical treatment response in ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/31748505

“Here we report that CBDV can ‘shift’ subcortical levels of the brain’s primary excitatory metabolite glutamate (measured as Glx) both in the neurotypical and autistic brain; but that there may be significant response variability in ASD. These findings add to our understanding of the effects of CBDV in the adult human brain. Nonetheless, future studies will need to explore (i) the mechanisms of action of CBDV; (ii) the impact of CBDV on (ASD-related) cognition and behaviour; (iii) if single-dose responsivity could facilitate the identification of pharmacologically homogeneous sub-groups; and (iv) if acute CBDV effects are indicative of the impact of long-term treatment in ASD.”

https://www.nature.com/articles/s41398-019-0654-8

Could the Combination of Two Non-Psychotropic Cannabinoids Counteract Neuroinflammation? Effectiveness of Cannabidiol Associated with Cannabigerol.

medicina-logo“Neuroinflammation is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this study, we investigate the anti-inflammatory, anti-oxidant, and anti-apoptotic properties of two non-psychoactive phytocannabinoids, cannabigerol (CBG) and cannabidiol (CBD).

Results: Pre-treatment with CBG (at 2.5 and 5 µM doses) alone and in combination with CBD (at 2.5 and 5 µM doses) was able to reduce neuroinflammation induced by a culture medium of LPS-stimulated macrophages. In particular, the pre-treatment with CBD at a 5 µM dose decreased TNF-α levels and increased IL10 and IL-37 expression. CBG-CBD association at a 5 µM dose also reduced NF-kB nuclear factor activation with low degradation of the inhibitor of kappaB alpha (IkBα). CBG and CBD co-administered at a 5 µM dose decreased iNOS expression and increased Nrf2 levels. Furthermore, the pre-treatment with the association of two non-psychoactive cannabinoids downregulated Bax protein expression and upregulated Bcl-2 expression. Our data show the anti-inflammatory, anti-oxidant, and anti-apoptotic effects PPARγ-mediated.

Conclusions: Our results provide preliminary support on the potential therapeutic application of a CBG-CBD combination for further preclinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31752240

https://www.mdpi.com/1010-660X/55/11/747

Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans.

Image result for ovid journal“This review is to summarize most recent evidence published in the last 18 months on medical and recreational use of cannabis and cannabinoids in relation to anxiety, depression (unipolar and bipolar), and dysregulation of emotions as part of posttraumatic stress disorders (PTSD) and emotionally instable personality disorders.

It also covers the investigation of endocannabinoids as potential biomarkers in these conditions. This is important with increasing medicinal use of cannabinoids and growing social tolerance towards recreational cannabis use.

RECENT FINDINGS:

There is some recent evidence suggesting cannabinoids, cannabidiol or cannabidiol-enriched cannabis preparations have anxiolytic properties. In addition, depression may be worsened by cannabis use, however, randomized controlled trials (RCT) are lacking.

New evidence also suggests that cannabidiol or cannabidiol-enriched cannabis use for PTSD and emotion regulation can induce hyporesponse to fear and stress. Further, several lines of evidence point to the endocannabinoid system as a key player in some of the reviewed disorders, in particular anxiety and PTSD.

SUMMARY:

The most recent evidence for a therapeutic use of cannabinoids in the reviewed conditions is weak and lacking well designed RCTs. However, there is some indication of the role of the endocannabinoid system in these conditions that warrant further studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31714262

https://insights.ovid.com/crossref?an=00001504-900000000-99165

Cannabinoid receptor 2 activation decreases severity of cyclophosphamide-induced cystitis via regulating autophagy.

Publication cover image“Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1 and CB2).

The objective of this study was to determine efficacy and mechanism of CB2 activation on cyclophosphamide (CYP)-induced cystitis in vivo.

CONCLUSIONS:

Activation of CB2 decreased severity of CYP-induced cystitis and ameliorated bladder inflammation. CB2 activation is protective in cystitis through the activation of autophagy and AMPK-mTOR pathway may be involved in the initiation of autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/31729056

https://onlinelibrary.wiley.com/doi/abs/10.1002/nau.24205