The Cannabinoid WIN 55,212-2 Reduces Delayed Neurologic Sequelae After Carbon Monoxide Poisoning by Promoting Microglial M2 Polarization Through ST2 Signaling.

 “Delayed neurologic sequelae (DNS) are among the most serious complications of carbon monoxide (CO) poisoning caused partly by elevated neuroinflammation.

WIN 55,212-2, a non-selective agonist of cannabinoid receptors, has been demonstrated to have anti-inflammatory properties in various brain disorders.

The anti-inflammatory action of WIN 55,212-2 is potentially associated with driving microglial M2 polarization. ST2 signaling is important in regulating inflammatory responses and microglial polarization. Therefore, we aimed to investigate the neuroprotective effect of WIN 55,212-2 on DNS after CO poisoning and elucidate its relationship with ST2-mediated microglial M2 polarization.

The behavioral tests showed that treatment with WIN 55,212-2 significantly ameliorates the cognitive impairment induced by CO poisoning.

This behavioral improvement was accompanied by reduced neuron loss, decreased production of pro-inflammatory cytokines, and a limited number of microglia in the hippocampus. Moreover, WIN 55,212-2 elevated the protein expression of IL-33 (the ligand of ST2) and ST2, increased the ratio of CD206-positive (M2 phenotype) and ST2-positive microglia, and augmented production of M2 microglia-associated cytokines in the hippocampus of CO-exposed rats.

Furthermore, we observed that the WIN 55,212-2-mediated increases in ST2 protein expression, CD206-positive and ST2-positive microglia, and microglia-associated cytokines were blocked by the cannabinoid receptor 2 (CB2R) antagonist AM630 but not by the cannabinoid receptor 1 (CB1R) antagonist AM251. In contrast, the WIN 55,212-2-induced upregulation of the IL-33 protein expression was inhibited by AM251 but not by AM630.

Altogether, these findings reveal cannabinoid receptors as promising therapeutic agents for CO poisoning and identify ST2 signaling-related microglial M2 polarization as a new mechanism of cannabinoid-induced neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/31732924

https://link.springer.com/article/10.1007%2Fs12031-019-01429-2

Δ9-THC and related cannabinoids suppress substance P- induced neurokinin NK1-receptor-mediated vomiting via activation of cannabinoid CB1 receptor.

European Journal of Pharmacology

“Δ9-THC suppresses cisplatin-induced vomiting through activation of cannabinoid CB1 receptors.

Cisplatin-evoked emesis is predominantly due to release of serotonin and substance P (SP) in the gut and the brainstem which subsequently stimulate their corresponding 5-HT3-and neurokinin NK1-receptors to induce vomiting. Δ9-THC can inhibit vomiting caused either by the serotonin precursor 5-HTP, or the 5-HT3 receptor selective agonist, 2-methyserotonin.

In the current study, we explored whether Δ9-THC and related CB1/CB2 receptor agonists (WIN55,212-2 and CP55,940) inhibit vomiting evoked by SP (50 mg/kg, i.p.) or the NK1 receptor selective agonist GR73632 (5 mg/kg, i.p.). Behavioral methods were employed to determine the antiemetic efficacy of cannabinoids in least shrews.

Our results showed that administration of varying doses of Δ9-THC (i.p. or s.c.), WIN55,212-2 (i.p.), or CP55,940 (i.p.) caused significant suppression of SP-evoked vomiting in a dose-dependent manner. When tested against GR73632, Δ9-THC also dose-dependently reduced the evoked emesis.

The antiemetic effect of Δ9-THC against SP-induced vomiting was prevented by low non-emetic doses of the CB1 receptor inverse-agonist/antagonist SR141716A (<10 mg/kg). We also found that the NK1 receptor antagonist netupitant can significantly suppress vomiting caused by a large emetic dose of SR141716A (20 mg/kg).

In sum, Δ9-THC and related cannabinoids suppress vomiting evoked by the nonselective (SP) and selective (GR73632) neurokinin NK1 receptor agonists via stimulation of cannabinoid CB1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/31738934

https://www.sciencedirect.com/science/article/pii/S0014299919307587?via%3Dihub

Medical Cannabis as an Effective Treatment for Refractory Symptoms of Paraneoplastic Stiff Person Syndrome.

Journal of Pain and Symptom Management Home“Stiff person syndrome (SPS) is a disorder characterized by fluctuating, progressive and painful spasms of the limbs, trunk and face. The condition is frequently associated with other diseases, including malignancies1. Up to 10% of SPS cases are paraneoplastic (PSPS) and occur with various types of cancer 2. SPS is thought to be immune-mediated, with up to 60% of patients demonstrating antibodies to glutamic acid decarboxylase (GAD), the rate-limiting enzyme for the production of the inhibitory neurotransmitter γ-aminobutyric acid (GABA).” https://www.ncbi.nlm.nih.gov/pubmed/31743746

https://www.jpsmjournal.com/article/S0885-3924(19)30654-2/fulltext

Successful cannabis derivatives oromucosal spray therapy for a seronegative stiff-person syndrome: a case report.”  https://ejhp.bmj.com/content/19/2/219.2

Cannabis derivatives therapy for a seronegative stiff-person syndrome: a case report”   http://www.ncbi.nlm.nih.gov/pubmed/22726074

Frequency of cannabis and illicit opioid use among people who use drugs and report chronic pain: A longitudinal analysis.

Image result for plos medicine“Ecological research suggests that increased access to cannabis may facilitate reductions in opioid use and harms, and medical cannabis patients describe the substitution of opioids with cannabis for pain management.

We aimed to investigate the longitudinal association between frequency of cannabis use and illicit opioid use among people who use drugs (PWUD) experiencing chronic pain.

The most commonly reported therapeutic reasons for cannabis use were pain (36%), sleep (35%), stress (31%), and nausea (30%). After adjusting for demographic characteristics, substance use, and health-related factors, daily cannabis use was associated with significantly lower odds of daily illicit opioid use (adjusted odds ratio 0.50, 95% CI 0.34-0.74, p < 0.001).

 

We observed an independent negative association between frequent cannabis use and frequent illicit opioid use among PWUD with chronic pain. These findings provide longitudinal observational evidence that cannabis may serve as an adjunct to or substitute for illicit opioid use among PWUD with chronic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31743343

“In conclusion, we found evidence to suggest that frequent use of cannabis may serve as an adjunct to or substitute for illicit opioid use among PWUD with chronic pain in Vancouver. The findings of this study have implications for healthcare and harm reduction service providers. In chronic pain patients with complex socio-structural and substance use backgrounds, cannabis may be used as a means of treating health problems or reducing substance-related harm. In the context of the current opioid crisis and the recent rollout of a national regulatory framework for cannabis use in Canada, frequent use of cannabis among PWUD with pain may play an important role in preventing or substituting frequent illicit opioid use.”

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002967

Effects of CBD-Enriched Cannabis sativa Extract on Autism Spectrum Disorder Symptoms: An Observational Study of 18 Participants Undergoing Compassionate Use.

Image result for frontiers in neurology“Autism Spectrum Disorders comprise conditions that may affect cognitive development, motor skills, social interaction, communication, and behavior. This set of functional deficits often results in lack of independence for the diagnosed individuals, and severe distress for patients, families, and caregivers.

There is a mounting body of evidence indicating the effectiveness of pure cannabidiol (CBD) and CBD-enriched Cannabis sativa extract (CE) for the treatment of autistic symptoms in refractory epilepsy patients. There is also increasing data support for the hypothesis that non-epileptic autism shares underlying etiological mechanisms with epilepsy.

Here we report an observational study with a cohort of 18 autistic patients undergoing treatment with compassionate use of standardized CBD-enriched CE (with a CBD to THC ratio of 75/1).

Among the 15 patients who adhered to the treatment (10 non-epileptic and five epileptic) only one patient showed lack of improvement in autistic symptoms. Due to adverse effects, three patients discontinued CE use before 1 month.

After 6-9 months of treatment, most patients, including epileptic and non-epileptic, showed some level of improvement in more than one of the eight symptom categories evaluated: Attention Deficit/Hyperactivity Disorder; Behavioral Disorders; Motor Deficits; Autonomy Deficits; Communication and Social Interaction Deficits; Cognitive Deficits; Sleep Disorders and Seizures, with very infrequent and mild adverse effects.

The strongest improvements were reported for Seizures, Attention Deficit/Hyperactivity Disorder, Sleep Disorders, and Communication and Social Interaction Deficits. This was especially true for the 10 non-epileptic patients, nine of which presented improvement equal to or above 30% in at least one of the eight categories, six presented improvement of 30% or more in at least two categories and four presented improvement equal to or above 30% in at least four symptom categories.

Ten out of the 15 patients were using other medicines, and nine of these were able to keep the improvements even after reducing or withdrawing other medications.

The results reported here are very promising and indicate that CBD-enriched CE may ameliorate multiple ASD symptoms even in non-epileptic patients, with substantial increase in life quality for both ASD patients and caretakers.”

https://www.ncbi.nlm.nih.gov/pubmed/31736860

“The findings presented here, taken together, support the notion that many autism symptoms are associated to neuronal hyperexcitability, and indicate that CBD-enriched CE yields positive effects in multiple autistic symptoms, without causing the typical side effects found in medicated ASD patients. Most patients in this study had improved symptoms even after supervised weaning of other neuropsychiatric drugs.”

https://www.frontiersin.org/articles/10.3389/fneur.2019.01145/full

Efficacy and adverse event profile of cannabidiol and medicinal cannabis for treatment-resistant epilepsy: Systematic review and meta-analysis.

“This paper aimed to systematically examine the efficacy and adverse event (AE) profile of cannabidiol and medicinal cannabis by analyzing qualitative and meta-analytic data.

According to the results, a statistically meaningful effect of cannabidiol compared with placebo was observed (p < 0.00001). When comparing treatment with cannabidiol or medicinal cannabis, significance was not found for the AE profile (p = 0.74). As AEs for cannabidiol were more common under short-term than under long-term treatment (p < 0.00001), this approach was favorable in the long term.

Furthermore, cannabidiol is more effective than placebo, regardless of the etiology of epileptic syndromes and dosage.

Overall, the AE profile did not differ across treatments with cannabidiol or medicinal cannabis, though it did differ favorably for long-term than for short-term treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31731110

“CBD treatments were effective compared with placebo, regardless of the dose administered. The safety analysis is related to tolerable SEs found in studies with both CBD and medicinal CNB. There was a greater tendency for adverse events in short-term treatment compared with long-term treatment.”

https://www.epilepsybehavior.com/article/S1525-5050(19)30862-5/fulltext

Cannabis Use, a Self-Management Strategy Among Australian Women With Endometriosis: Results From a National Online Survey.

Journal of Obstetrics and Gynaecology Canada  Home“This study sought to determine the prevalence, tolerability, and self-reported effectiveness of cannabis in women with endometriosis.

A total of 484 responses were included for analysis, with 76% of the women reporting the use of general self-management strategies within the last 6 months. Of those using self-management, 13% reported using cannabis for symptom management. Self-reported effectiveness in pain reduction was high (7.6 of 10), with 56% also able to reduce pharmaceutical medications by at least half. Women reported the greatest improvements in sleep and in nausea and vomiting. Adverse effects were infrequent (10%) and minor.

Women report good efficacy of cannabis in reducing pain and other symptoms, with few adverse effects reported.”

https://www.ncbi.nlm.nih.gov/pubmed/31722852

https://www.jogc.com/article/S1701-2163(19)30808-4/fulltext

Cannabidiol Protects Dopaminergic Neuronal Cells from Cadmium.

ijerph-logo“The protective effect of cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, against neuronal toxicity induced by cadmium chloride (CdCl2 10 μM) was investigated in a retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cell line.

CBD (1 μM) was applied 24 h before and removed during cadmium (Cd) treatment. In differentiated neuronal cells, CBD significantly reduced the Cd-dependent decrease of cell viability, and the rapid reactive oxygen species (ROS) increase.

CBD significantly prevented the endoplasmic reticulum (ER) stress (GRP78 increase) and the subcellular distribution of the cytochrome C, as well as the overexpression of the pro-apoptotic protein BAX. Immunocytochemical analysis as well as quantitative protein evaluation by western blotting revealed that CBD partially counteracted the depletion of the growth associated protein 43 (GAP43) and of the neuronal specific class III β-tubulin (β3 tubulin) induced by Cd treatment.

These data showed that Cd-induced neuronal injury was ameliorated by CBD treatment and it was concluded that CBD may represent a potential option to protect neuronal cells from the detrimental effects of Cd toxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/31718076

https://www.mdpi.com/1660-4601/16/22/4420

Study protocol for a randomised, double-blind, placebo-controlled study evaluating the Efficacy of cannabis-based Medicine Extract in slowing the disease pRogression of Amyotrophic Lateral sclerosis or motor neurone Disease: the EMERALD trial.

Image result for bmj open“Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no known cure and with an average life expectancy of 3-5 years post diagnosis.

The use of complementary medicine such as medicinal cannabis in search for a potential treatment or cure is common in ALS.

Preclinical studies have demonstrated the efficacy of cannabinoids in extending the survival and slowing of disease progression in animal models with ALS.

There are anecdotal reports of cannabis slowing disease progression in persons with ALS (pALS) and that cannabis alleviated the symptoms of spasticity and pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31719072

https://bmjopen.bmj.com/content/9/11/e029449

Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity.

molecules-logo“Cannabis sativa L. is one of the most-studied species for its phytochemistry due to the abundance of secondary metabolites, including cannabinoids, terpenes and phenolic compounds. In the last decade, fiber-type hemp varieties have received interest for the production of many specialized secondary metabolites derived from the phenylpropanoid pathway. The interest in these molecules is due to their antioxidant activity.

Since secondary metabolite synthesis occurs at a very low level in plants, the aim of this study was to develop a strategy to increase the production of such compounds and to elucidate the biochemical pathways involved. Therefore, cell suspensions of industrial hemp (C. sativa L. var. Futura) were produced, and an advantageous elicitation strategy (methyl jasmonate, MeJA) in combination with precursor feeding (tyrosine, Tyr) was developed.

The activity and expression of phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT) increased upon treatment. Through 1H-NMR analyses, some aromatic compounds were identified, including, for the first time, 4-hydroxyphenylpyruvate (4-HPP) in addition to tyrosol. The 4-day MeJA+Tyr elicited samples showed a 51% increase in the in vitro assay (2,2-diphenyl-1-picrylhydrazyl, DPPH) radical scavenging activity relative to the control and a 80% increase in the cellular antioxidant activity estimated on an ex vivo model of human erythrocytes.

Our results outline the active metabolic pathways and the antioxidant properties of hemp cell extracts under the effect of specific elicitors.”

https://www.ncbi.nlm.nih.gov/pubmed/31717508

https://www.mdpi.com/1420-3049/24/22/4056