Cannabidiol attenuates behavioral changes in a rodent model of schizophrenia through 5-HT1A, but not CB1 and CB2 receptors.

Pharmacological Research“Preclinical and clinical data indicate that cannabidiol (CBD), a non-psychotomimetic compound from the Cannabis sativa plant, can induce antipsychotic-like effects.

These data suggest that CBD induces antipsychotic-like effects by activating 5-HT1A receptors and indicate that this compound could be an interesting alternative for the treatment of negative and cognitive symptoms of schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/32151683

https://www.sciencedirect.com/science/article/abs/pii/S1043661819315439?via%3Dihub

An overview of cannabis based treatment in Crohn’s disease.

 Publication Cover“Cannabis use among inflammatory bowel disease (IBD) patients is common. There are many studies of various laboratory models demonstrating the anti-inflammatory effect of cannabis, but their translation to human disease is still lacking.

Areas covered: The cannabis plant contains many cannabinoids, that activate the endocannabinoid system. The two most abundant phytocannabinoids are the psychoactive Tetrahydrocannabinol (THC), and the (mostly) anti-inflammatory cannabidiol (CBD). Approximately 15% of IBD patients use cannabis to ameliorate disease symptoms. Unfortunately, so far there are only three small placebo controlled study regarding the use of cannabis in active Crohns disease, combining altogether 93 subjects. Two of the studies showed significant clinical improvement but no improvement in markers of inflammation.

Expert opinion: Cannabis seems to have a therapeutic potential in IBD. This potential must not be neglected; however, cannabis research is still at a very early stage. The complexity of the plant and the diversity of different cannabis chemovars create an inherent difficulty in cannabis research. We need more studies investigating the effect of the various cannabis compounds. These effects can then be investigated in randomized placebo controlled clinical trials to fully explore the potential of cannabis treatment in IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/32149543

https://www.tandfonline.com/doi/abs/10.1080/17474124.2020.1740590?journalCode=ierh20

Evaluation of pharmacokinetics and acute anti-inflammatory potential of two oral cannabidiol preparations in healthy adults.

Phytotherapy Research“Cannabidiol (CBD) is a dietary supplement with numerous purported health benefits and an expanding commercial market. Commercially available CBD preparations range from tinctures, oils, and powders, to foods and beverages.

Despite widespread use, information regarding bioavailability of these formulations is limited. The purpose of this study was to test the bioavailability of two oral formulations of CBD in humans and explore their potential acute anti-inflammatory activity.

This study provides pilot data for designing and powering future studies to establish the anti-inflammatory potential and bioavailability of a larger variety of commercial CBD products consumed by humans.”

https://www.ncbi.nlm.nih.gov/pubmed/32147925

https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6651

High expectations: The landscape of clinical trials of medical marijuana in oncology.

Complementary Therapies in Medicine“Given the infancy and evolving complexity of medicinal marijuana, an evolving political landscape, and the growing frequency of its use in cancer care, it is important for oncologists to be actively engaged in developing and successfully implementing clinical trials focusing on medical marijuana.

The purpose of this study was to analyze and evaluate trends in clinical trials focused on medical marijuana in oncology.

CONCLUSION:

Our results indicate that across oncology, there is growing interest in clinical research in the use of medical marijuana.”

https://www.ncbi.nlm.nih.gov/pubmed/32147080

https://www.sciencedirect.com/science/article/abs/pii/S0965229919309306?via%3Dihub

What Do You Know About Maryjane? A Systematic Review of the Current Data on the THC:CBD Ratio.

Publication Cover“Ratios of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact metabolism and therapeutic effects of cannabis.

The medical and scientific communities have not drawn substantive conclusions nor thoroughly explored THC:CBD ratios for “best practice” treatment of different disease processes and their sequelae.

While there is evidence that cannabis provides medical benefits, research is lacking on standardization of medical cannabis use in modern medical practices.”

https://www.ncbi.nlm.nih.gov/pubmed/32124675

The effects of cannabinoids on glioblastoma growth: A systematic review with meta-analysis of animal model studies.

European Journal of Pharmacology“Glioblastoma multiforme (GBM) is the most frequent and aggressive malignant brain tumour, with a poor prognosis despite available surgical and radio-chemotherapy, rising the necessity for searching alternative therapies. Several preclinical studies evaluating the efficacy of cannabinoids in animal models of GBM have been described, but the diversity of experimental conditions and of outcomes hindered definitive conclusions about cannabinoids efficacy.

A search in different databases (Pubmed, Web of Science, Scopus and SciELO) was conducted during June 2019 to systematically identify publications evaluating the effects of cannabinoids in murine xenografts models of GBM. The tumour volume and number of animals were extracted, being a random effects meta-analysis of these results performed to estimate the efficacy of cannabinoids. The impact of different experimental factors and publication bias on the efficacy of cannabinoids was also assessed. Nine publications, which satisfied the inclusion criteria, were identified and subdivided in 22 studies involving 301 animals.

Overall, cannabinoid therapy reduced the fold of increase in tumour volume in animal models of GBM, when compared with untreated controls. The overall weighted standardized difference in means (WSDM) for the effect of cannabinoids was -1.399 (95% CI: -1.900 to -0.898; P-value<0.0001). Furthermore, treatment efficacy was observed for different types of cannabinoids, alone or in combination, and for different treatment durations.

Cannabinoid therapy was still effective after correcting for publication bias. The results indicate that cannabinoids reduce the tumour growth in animal models of GBM, even after accounting for publication bias.”

https://www.ncbi.nlm.nih.gov/pubmed/32145324

https://www.sciencedirect.com/science/article/abs/pii/S0014299920301473?via%3Dihub

Stimulation of brain cannabinoid CB1 receptors can ameliorate hypertension in spontaneously hypertensive rats.

Clinical and Experimental Pharmacology and Physiology“Excessive activation of the sympatho-adrenomedullary system plays a pathogenic role in triggering and sustaining essential hypertension. We previously reported that, in normotensive rats, intracerebroventricularly (i.c.v.) administered neuropeptides, corticotropin-releasing factor and bombesin induced activation of the sympatho-adrenomedullary system, and that brain cannabinoid CB1 receptors negatively regulated this activation.

In this study, we investigated the effects of brain CB1 receptor stimulation on blood pressure and the sympatho-adrenomedullary outflow in spontaneously hypertensive rats (SHRs), commonly used animal models of essential hypertension, and in Wistar-Kyoto (WKY) rats, normotensive controls of SHRs.

These results suggest that stimulation of brain CB1 receptors can ameliorate hypertension accompanied by enhanced sympathetic outflow without affecting blood pressure under normotensive conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/32141630

https://onlinelibrary.wiley.com/doi/abs/10.1111/1440-1681.13297

Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy?

Publication cover image“Cannabis has been considered as a therapeutic strategy to control intractable epilepsy.

Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects.

This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled “Cannabinoid and epilepsy: myths and realities.” This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018).

The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/32140642

“Cannabidiol is a multitarget drug that represents a new hope to control drug‐resistant epilepsy.”

https://onlinelibrary.wiley.com/doi/full/10.1002/epi4.12376

Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A Mini-Review.

Image result for frontiers in cellular neuroscience“The consistency, efficacy, and safety of cannabis-based medicines have been demonstrated in humans, leading to the approval of the first cannabis-based therapy to alleviate spasticity and pain associated with multiple sclerosis (MS). Indeed, the evidence supporting the therapeutic potential of cannabinoids for the management of pathological events related to this disease is ever increasing.

Different mechanisms of action have been proposed for cannabis-based treatments in mouse models of demyelination, such as Experimental Autoimmune Encephalomyelitis (EAE) and Theiler’s Murine Encephalomyelitis Virus-Induced Demyelinating Disease (TMEV-IDD). Cells in the immune and nervous system express the machinery to synthesize and degrade endocannabinoids, as well as their CB1 and CB2 receptors, each mediating different intracellular pathways upon activation. Hence, the effects of cannabinoids on cells of the immune system, on the blood-brain barrier (BBB), microglia, astrocytes, oligodendrocytes and neurons, potentially open the way for a plethora of therapeutic actions on different targets that could aid the management of MS.

As such, cannabinoids could have an important impact on the outcome of MS in terms of the resolution of inflammation or the potentiation of endogenous repair in the central nervous system (CNS), as witnessed in the EAE, TMEV-IDD and toxic demyelination models, and through other in vitro approaches. In this mini review article, we summarize what is currently known about the peripheral and central effects of cannabinoids in relation to the neuroinflammation coupled to MS. We pay special attention to their effects on remyelination and axon preservation within the CNS, considering the major questions raised in the field and future research directions.”

https://www.ncbi.nlm.nih.gov/pubmed/32140100

https://www.frontiersin.org/articles/10.3389/fncel.2020.00034/full

Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria.

Scientific Reports “The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.”

https://www.ncbi.nlm.nih.gov/pubmed/32139776

https://www.nature.com/articles/s41598-020-60952-0