Adding medical cannabis to standard analgesic treatment for fibromyalgia: a prospective observational study.

Image result for Clin Exp Rheumatol. “To assess any clinical improvement attributable to the addition of medical cannabis treatment (MCT) to the stable (>3 months) standard analgesic treatment of fibromyalgia (FM) patients, the retention rate and any changes in the concomitant analgesic treatment over a period of six months.

METHODS:

The study involved 102 consecutive FM patients with VAS scores ≥4 despite standard analgesic treatment. Patients were prescribed two oil-diluted cannabis extracts: Bedrocan (22% THC, <1% CBD), and Bediol (6.3% THC, 8% CBD). FM severity was periodically assessed using Fibromyalgia Impact Questionnaire (FIQR), Fibromyalgia Assessment Scale (FAS), FACIT-Fatigue score, Pittsburgh Sleep Quality Index (PSQI), and Zung Depression and Anxiety Scales. During the study, patients were allowed to reduce or stop their concomitant analgesic therapy.

RESULTS:

The 6-month retention rate was 64%. A significant improvement in the PSQI and FIQR was observed in respectively 44% and 33% of patients. 50% showed a moderate improvement in the anxiety and depression scales. Multiple regression analysis showed a correlation between the body mass index (BMI) and FIQR improvement (p=0.017). Concomitant analgesic treatment was reduced or suspended in 47% of the patients. One-third experienced mild adverse events, which did not cause any significant treatment modifications.

CONCLUSIONS:

This observational study shows that adjunctive MCT offers a possible clinical advantage in FM patients, especially in those with sleep dysfunctions. The clinical improvement inversely correlated with BMI. The retention rate and changes in concomitant analgesic therapy reflect MCT efficacy of the improved quality of life of patients. Further studies are needed to confirm these data, identify MCT-responsive sub-groups of FM patients, and establish the most appropriate posology and duration of the therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/32116208

The implications of late-life cannabis use on brain health: A mapping review and implications for future research.

Ageing Research Reviews“While medical and recreational cannabis use is becoming more frequent among older adults, the neurocognitive consequences of cannabis use in this age group are unclear. The aim of this literature review was to synthesize and evaluate the current knowledge on the association of cannabis use during older-adulthood with cognitive function and brain aging.

We reviewed the literature from old animal models and human studies while focusing on the link of middle- and old-age use of cannabis with cognition. The report highlights the gap in knowledge on cannabis use in late-life and cognitive health, and discusses the limited findings in the context of substantial changes in attitudes and policies. Furthermore, we outline possible theoretical mechanisms and propose recommendations for future research.

The limited evidence on this important topic suggests that use in older ages may not be linked with poorer cognitive performance, thus detrimental effects of early-life cannabis use may not translate to use in older ages. Rather, use in old ages may be associated with improved brain health, in accordance with the known neuroprotective properties of several cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32109605

“Cannabis use in older ages may be associated with improved brain health.”

https://www.sciencedirect.com/science/article/pii/S1568163719303204?via%3Dihub

Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.

Image result for frontiers in neurology“Microglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling.

Since chronic inflammatory activation of microglia is correlated with several neurodegenerative diseases, functional modulation of microglial phenotypes has been considered as a potential therapeutic strategy.

The endocannabinoid (eCB) system, composed of cannabinoid receptors and ligands and their metabolic/biosynthetic enzymes, has been shown to activate anti-inflammatory signaling pathways that modulate immune cell functions. Growing evidence has demonstrated that endogenous, synthetic, and plant-derived eCB agonists possess therapeutic effects on several neuropathologies; however, the molecular mechanisms that mediate the anti-inflammatory effects have not yet been identified.

Over the last decade, it has been revealed that the eCB system modulates microglial activation and population. In this review, we thoroughly examine recent studies on microglial phenotype modulation by eCB in neuroinflammatory and neurodegenerative disease conditions.

We hypothesize that cannabinoid 2 receptor (CB2R) signaling shifts the balance of expression between neuroinflammatory (M1-type) genes, neuroprotective (M2-type) genes, and homeostatic (M0-type) genes toward the latter two gene expressions, by which microglia acquire therapeutic functionality.”

https://www.ncbi.nlm.nih.gov/pubmed/32117037

https://www.frontiersin.org/articles/10.3389/fneur.2020.00087/full

Insight of Druggable Cannabinoids against Estrogen Receptor β in Breast Cancer.

 Publication Cover

“Breast cancer (BC) is the second most prevalent cancer worldwide.

Estrogen receptor beta (ERβ) is an essential protein of breast cells to suppress estrogen induced uncontrolled proliferation. Thus small molecules that can modulate and enhance ERβ expression would be an effective agent to suppress BC development.

Studies showed that cannabinoid (CB), specifically Delta-9-tetrahydrocannabinol (Del9THC), can increase the expression of ERβ and inhibits BC cell proliferation.

In this study, less psychoactive and structurally similar analogues of Del9THC were chosen as drug candidates and ERβ was targeted as a therapeutic receptor. Delta-8-tetrahydrocannabinol (Del8THC) and Delta-4-Isotetrahydrocannabinol (Del4isoTHC) were the drug candidates selected on the basis of literature reports, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties, medicinal chemistry profile and physicochemical features.

Molecular docking simulations were carried out to determine ligand receptor interactions and binding affinity based on free binding energy. To get a better drug, the structural modification was done on Del8THC and generated a new CB analogue called Cannabinoid A.

Finally, molecular interaction analysis revealed that two CBs and one of their analogue interact with the active site residues of ERβ. Therefore, this study revealed a new way to discover novel drug(s) for BC patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32116130

https://www.tandfonline.com/doi/abs/10.1080/07391102.2020.1737233?journalCode=tbsd20

Cannabinoids and Hormone Receptor-Positive Breast Cancer Treatment.

cancers-logo “Breast cancer (BC) is the most common cancer in women worldwide. Approximately 70-80% of BCs express estrogen receptors (ER), which predict the response to endocrine therapy (ET), and are therefore hormone receptor-positive (HR+).

Endogenous cannabinoids together with cannabinoid receptor 1 and 2 (CB1, CB2) constitute the basis of the endocannabinoid system.

Interactions of cannabinoids with hypothalamic-pituitary-gonadal axis hormones are well documented, and two studies found a positive correlation between peak plasma endogenous cannabinoid anandamide with peak plasma 17β-estradiol, luteinizing hormone and follicle-stimulating hormone levels at ovulation in healthy premenopausal women. Do cannabinoids have an effect on HR+ BC? In this paper we review known and possible interactions between cannabinoids and specific HR+ BC treatments.

In preclinical studies, CB1 and CB2 agonists (i.e., anandamide, THC) have been shown to inhibit the proliferation of ER positive BC cell lines.

There is less evidence for antitumor cannabinoid action in HR+ BC in animal models and there are no clinical trials exploring the effects of cannabinoids on HR+ BC treatment outcomes. Two studies have shown that tamoxifen and several other selective estrogen receptor modulators (SERM) can act as inverse agonists on CB1 and CB2, an interaction with possible clinical consequences. In addition, cannabinoid action could interact with other commonly used endocrine and targeted therapies used in the treatment of HR+ BC.”

https://www.ncbi.nlm.nih.gov/pubmed/32106399

https://www.mdpi.com/2072-6694/12/3/525

Dose-Ranging Effect of Adjunctive Oral Cannabidiol vs Placebo on Convulsive Seizure Frequency in Dravet Syndrome: A Randomized Clinical Trial.

Image result for jama neurology“Clinical evidence supports effectiveness of cannabidiol for treatment-resistant seizures in Dravet syndrome, but this trial is the first to evaluate the 10-mg/kg/d dose.

OBJECTIVE:

To evaluate the efficacy and safety of a pharmaceutical formulation of cannabidiol, 10 and 20 mg/kg/d, vs placebo for adjunctive treatment of convulsive seizures in patients with Dravet syndrome.

MAIN OUTCOMES AND MEASURES:

The primary outcome was change from baseline in convulsive seizure frequency during the treatment period. Secondary outcomes included change in all seizure frequency, proportion with at least a 50% reduction in convulsive seizure activity, and change in Caregiver Global Impression of Change score.

RESULTS:

Of 198 eligible patients (mean [SD] age, 9.3 [4.4] years; 104 female [52.5%]), 66 were randomized to the CBD10 group, 67 to the CBD20 group, and 65 to the placebo group, and 190 completed treatment. The percentage reduction from baseline in convulsive seizure frequency was 48.7% for CBD10 group and 45.7% for the CBD20 group vs 26.9% for the placebo group; the percentage reduction from placebo was 29.8% (95% CI, 8.4%-46.2%; P = .01) for CBD10 group and 25.7% (95% CI, 2.9%-43.2%; P = .03) for the CBD20 group. The most common adverse events were decreased appetite, diarrhea, somnolence, pyrexia, and fatigue. Five patients in the CBD20 group discontinued owing to adverse events. Elevated liver transaminase levels occurred more frequently in the CBD20 (n = 13) than the CBD10 (n = 3) group, with all affected patients given concomitant valproate sodium.

CONCLUSIONS AND RELEVANCE:

Adjunctive cannabidiol at doses of 10 and 20 mg/kg/d led to similar clinically relevant reductions in convulsive seizure frequency with a better safety and tolerability profile for the 10-mg/kg/d dose in children with treatment-resistant Dravet syndrome. Dose increases of cannabidiol to greater than 10 mg/kg/d should be tailored to individual efficacy and safety.”

https://www.ncbi.nlm.nih.gov/pubmed/32119035

https://jamanetwork.com/journals/jamaneurology/fullarticle/2762458

Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ42 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice.

Image result for j alzheimers dis“Alzheimer’s disease (AD) is characterized by progressive cognitive decline and pathologically by the accumulation of amyloid-β (Aβ) and tau hyperphosphorylation causing neurodegeneration and neuroinflammation. Current AD treatments do not stop or reverse the disease progression, highlighting the need for more effective therapeutics.

The phytocannabinoid cannabidiol (CBD) has demonstrated antioxidant, anti-inflammatory, and neuroprotective properties. Furthermore, chronic CBD treatment (20 mg/kg) reverses social and object recognition memory deficits in the AβPPxPS1 transgenic mouse model with only limited effects on AD-relevant brain pathology.

Importantly, studies have indicated that CBD works in a dose-dependent manner. Thus, this study determined the chronic effects of 50 mg/kg CBD in male AβPPxPS1 mice. 12-month-old mice were treated with 50 mg/kg CBD or vehicle via daily intraperitoneal injections for 3 weeks prior to behavioral testing. A variety of cognitive domains including object and social recognition, spatial and fear-associated memory were evaluated. Pathological brain analyses for AD-relevant markers were conducted using ELISA and western blot.

Vehicle-treated male AβPPxPS1 mice demonstrated impaired social recognition memory and reversal spatial learning. These deficits were restored after CBD treatment. Chronic CBD tended to reduce insoluble Aβ40 levels in the hippocampus of AβPPxPS1 mice but had no effect on neuroinflammation, neurodegeneration, or PPARγ markers in the cortex.

This study demonstrates that therapeutic-like effects of 50 mg/kg CBD on social recognition memory and spatial learning deficits in AβPPxPS1 mice are accompanied by moderate brain region-specific reductions in insoluble Aβ40 levels. The findings emphasize the clinical relevance of CBD treatment in AD; however, the underlying mechanisms involved require further investigation.”

Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease.

European Journal of Medicinal Chemistry“Herein, 11 general types of natural cannabinoids from Cannabis sativa as well as 50 (-)-CBD analogues with therapeutic potential were described. The underlying molecular mechanisms of CBD as a therapeutic candidate for epilepsy and neurodegenerative diseases were comprehensively clarified. CBD indirectly acts as an endogenous cannabinoid receptor agonist to exert its neuroprotective effects. CBD also promotes neuroprotection through different signal transduction pathways mediated indirectly by cannabinoid receptors. Furthermore, CBD prevents the glycogen synthase kinase 3β (GSK-3β) hyperphosphorylation caused by Aβ and may be developed as a new therapeutic candidate for Alzheimer’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/32109623

“For AD treatment, CBD can rescue the production of neurofibrillary tangles and inhibit neuronal apoptosis.”

https://www.sciencedirect.com/science/article/abs/pii/S0223523420301306?via%3DihubImage 1

A Review of Scientific Evidence for THC:CBD Oromucosal Spray (Nabiximols) in the Management of Chronic Pain.

“The 20% prevalence of chronic pain in the general population is a major health concern given the often profound associated impairment of daily activities, employment status, and health-related quality of life in sufferers. Resource utilization associated with chronic pain represents an enormous burden for healthcare systems. Although analgesia based on the World Health Organization’s pain ladder continues to be the mainstay of chronic pain management, aside from chronic cancer pain or end-of-life care, prolonged use of non-steroidal anti-inflammatory drugs or opioids to manage chronic pain is rarely sustainable.

As the endocannabinoid system is known to control pain at peripheral, spinal, and supraspinal levels, interest in medical use of cannabis is growing.

A proprietary blend of cannabis plant extracts containing delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) as the principal cannabinoids is formulated as an oromucosal spray (USAN name: nabiximols) and standardized to ensure quality, consistency and stability. This review examines evidence for THC:CBD oromucosal spray (nabiximols) in the management of chronic pain conditions.

Cumulative evidence from clinical trials and an exploratory analysis of the German Pain e-Registry suggests that add-on THC:CBD oromucosal spray (nabiximols) may have a role in managing chronic neuropathic pain, although further precise clinical trials are required to draw definitive conclusions.”

https://www.ncbi.nlm.nih.gov/pubmed/32104061

https://www.dovepress.com/a-review-of-scientific-evidence-for-thccbd-oromucosal-spray-nabiximols-peer-reviewed-article-JPR

“Smoked Cannabis Proven Effective In Treating Neuropathic Pain.” https://www.sciencedaily.com/releases/2007/10/071024141745.htm

“Marijuana Relieves Chronic Pain, Research Shows” https://www.webmd.com/pain-management/news/20100830/marijuana-relieves-chronic-pain-research-show#1

Cannabinoids in the Treatment of Epilepsy: Current Status and Future Prospects.

“Cannabidiol (CBD) is one of the prominent phytocannabinoids found in Cannabis sativa, differentiating from Δ9-tetrahydrocannabinol (THC) for its non-intoxicating profile and its antianxiety/antipsychotic effects. CBD is a multi-target drug whose anti-convulsant properties are supposed to be independent of endocannabinoid receptor CB1 and might be related to several underlying mechanisms, such as antagonism on the orphan GPR55 receptor, regulation of adenosine tone, activation of 5HT1A receptors and modulation of calcium intracellular levels. CBD is a lipophilic compound with low oral bioavailability (6%) due to poor intestinal absorption and high first-pass metabolism. Its exposure parameters are greatly influenced by feeding status (ie, high fat-containing meals). It is mainly metabolized by cytochrome P 450 (CYP) 3A4 and 2C19, which it strongly inhibits.

A proprietary formulation of highly purified, plant-derived CBD has been recently licensed as an adjunctive treatment for Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS), while it is being currently investigated in tuberous sclerosis complex. The regulatory agencies’ approval was granted based on four pivotal double-blind, placebo-controlled, randomized clinical trials (RCTs) on overall 154 DS patients and 396 LGS ones, receiving CBD 10 or 20 mg/kg/day BID as active treatment. The primary endpoint (reduction in monthly seizure frequency) was met by both CBD doses.

Most patients reported adverse events (AEs), generally from mild to moderate and transient, which mainly consisted of somnolence, sedation, decreased appetite, diarrhea and elevation in aminotransferase levels, the last being documented only in subjects on concomitant valproate therapy. The interaction between CBD and clobazam, likely due to CYP2C19 inhibition, might contribute to some AEs, especially somnolence, but also to CBD clinical effectiveness. Cannabidivarin (CBDV), the propyl analogue of CBD, showed anti-convulsant properties in pre-clinical studies, but a plant-derived, purified proprietary formulation of CBDV recently failed the Phase II RCT in patients with uncontrolled focal seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/32103958

https://www.dovepress.com/cannabinoids-in-the-treatment-of-epilepsy-current-status-and-future-pr-peer-reviewed-article-NDT