Cannabidiol (CBD) reduces cocaine-environment memory in mice

Pharmacology Biochemistry and Behavior “Cocaine addiction is a global health problem with no approved pharmacotherapies.

Preclinical research indicates the non-intoxicating phytocannabinoid, cannabidiol (CBD), can reduce addiction-relevant behaviour for several drug classes (e.g. ethanol, opiates, psychostimulants) in rodents. However, research into the effects of CBD on cocaine addiction-like behaviours is limited, and the acute effects of CBD on cocaine reward are unknown.

Objectives: The present experiments sought to clarify the effects of CBD (10 mg/kg) on the acquisition, consolidation, reconsolidation, extinction and drug-primed reinstatement of cocaine (15 mg/kg) conditioned place preference (CPP) in adult male C57BL6/J mice.

Results: CBD treatment reduced preference for the cocaine-context 20 days after CBD cessation. CBD also reduced consolidation of cocaine memory, and this was evident 1 day after cessation of CBD treatment. Interestingly, CBD treatment also modified cocaine-induced locomotion. CBD did not affect reconsolidation of cocaine-induced place preference, the rate of extinction of cocaine memory, or drug-primed reinstatement of cocaine CPP.

Conclusions: These findings indicate specific effects of acute 10 mg/kg CBD on cocaine memory processes, suggesting delayed effects on cocaine preference and consolidation of cocaine memory, and support the therapeutic utility of CBD for targeting some drug-associated memory processes.”

https://pubmed.ncbi.nlm.nih.gov/33127382/

https://www.sciencedirect.com/science/article/pii/S009130572030527X?via%3Dihub

Cannabis sativa extracts protect LDL from Cu 2+-mediated oxidation

See the source image“Multiple therapeutic properties have been attributed to Cannabis sativa. However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile.

Objectives: The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of Cannabis sativa available in Uruguay during progressive stages of maturation.

Results: The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC50 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC50 of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC50 ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase.

Conclusion: Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.”

https://pubmed.ncbi.nlm.nih.gov/33123676/

“Our findings support the beneficial effects of Cannabis sativa extracts on the initial phase of atherosclerosis. Since isolated cannabinoids were less effective preventing the oxidation of LDL, a synergistic effect between the diverse arrange of phytochemicals present in complex extracts is supported, reinforcing the entourage hypothesis and the use of whole medicinal cannabis extracts for therapeutic purposes.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00042-0

Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Issue Cover “Objective: To determine the benefit of a tetrahydrocannabinol (THC)-rich cannabis oil on symptoms and quality of life of fibromyalgia patients.

Conclusions: Phytocannabinoids can be a low-cost and well-tolerated therapy to reduce symptoms and increase the quality of life of patients with fibromyalgia. Future studies are still needed to assess long-term benefits, and studies with different varieties of cannabinoids associated with a washout period must be done to enhance our knowledge of cannabis action in this health condition.”

https://pubmed.ncbi.nlm.nih.gov/33118602/

“To our knowledge, this is the first randomized controlled trial to demonstrate the benefit of cannabis oil—a THC-rich whole plant extract—on symptoms and on quality of life of people with fibromyalgia. We conclude that phytocannabinoids can be a low-cost and well-tolerated therapy for symptom relief and quality of life improvement in these patients, and we suggest that this therapy could be included as an herbal medicine option for the treatment of this condition”

https://academic.oup.com/painmedicine/article/21/10/2212/5942556