Investigating the Effects of a Synthetic Cannabinoid on the Pathogenesis of Leukemia and Leukemic Stem Cells: A New Therapeutic Approach

View details for Cannabis and Cannabinoid Research cover image

“The popularity and usage of synthetic cannabinoids (SCs) are increasing due to their easy accessibility and psychoactive effects worldwide. Studies on cannabinoids on leukemic stem cells (LSC) and hematopoietic stem cells (HSCs), which are the precursors of leukemia cells, generally depend on the natural cannabinoid delta-9-THC. As there is only a limited number of studies focusing on the results of SC applications, the reflections upon LSCs have to be clarified.

In this study, biological responses and antileukemic effects of JWH-018-one of the first produced and widely used SCs-were evaluated upon leukemia cells. Whether JWH-018 exhibited a preventive effect on both leukemic and HSCs was evaluated by presenting a therapeutic approach for the first time in the literature. Cells were analyzed in case of cell proliferation, apoptosis, and transcriptional expression profiling of some significant JAK/STAT and AKT/mTOR pathways, apoptotic, cell cycle regulation, and epigenetic chromatin remodeling-related genes following JWH-018 treatment.

In conclusion, however, further studies are still needed upon both HSCs and LSCs to illuminate the effects of SCs on leukemogenesis on chronic myeloid leukemia (CML) more clearly; we consider that the JWH-018 can provide a therapeutic effect on the pathogenesis of leukemia and particularly upon LSCs and SCs might have therapeutic potential in addition to current therapy.”

https://pubmed.ncbi.nlm.nih.gov/35834597/

https://www.liebertpub.com/doi/10.1089/can.2021.0180

“Dronabinol has preferential antileukemic activity in acute lymphoblastic and myeloid leukemia with lymphoid differentiation patterns. Our study provides rigorous data to support clinical evaluation of THC as a low-toxic therapy option in a well defined subset of acute leukemia patients.”

https://pubmed.ncbi.nlm.nih.gov/26775260/

“Cannabinoid CP55940 selectively induces apoptosis in Jurkat cells and in ex vivo T-cell acute lymphoblastic leukemia through H 2 O 2 signaling mechanism. Our findings support the use of cannabinoids as a potential treatment for T-ALL cells.”

https://pubmed.ncbi.nlm.nih.gov/32540572/

“CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC (one of the psychoactive compounds found in cannabis)”  https://en.wikipedia.org/wiki/CP_55,940

“Delta9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Plant-derived cannabinoids, including Delta9-tetrahydrocannabinol (THC), induce apoptosis in leukemic cells”

https://pubmed.ncbi.nlm.nih.gov/16908594/


The Impact of Isolated Baseline Cannabis Use on Outcomes Following Thoracolumbar Spinal Fusion: A Propensity Score-Matched Analysis

Logo of iowaorthj

“Background: There is limited literature evaluating the impact of isolated cannabis use on outcomes for patients following spinal surgery. This study sought to compare 90-day complication, 90-day readmission, as well as 2-year revision rates between baseline cannabis users and non-users following thoracolumbar spinal fusion (TLF) for adult spinal deformity (ASD).

Results: 704 patients were identified (n=352 each), with comparable age, sex, race, primary insurance, Charlson/Deyo scores, surgical approach, and levels fused between cohorts (all, p>0.05). Cannabis users (versus non-users) incurred lower 90-day overall and medical complication rates (2.4% vs. 4.8%, p=0.013; 2.0% vs. 4.1%, p=0.018). Cohorts had otherwise comparable complication, revision, and readmission rates (p>0.05). Baseline cannabis use was associated with a lower risk of 90-day medical complications (OR=0.47, p=0.005). Isolated baseline cannabis use was not associated with 90-day surgical complications and readmissions, or two-year revisions.

Conclusion: Isolated baseline cannabis use, in the absence of any other diagnosed substance abuse disorders, was not associated with increased odds of 90-day surgical complications or readmissions or two-year revisions, though its use was associated with reduced odds of 90-day medical complications when compared to non-users undergoing TLF for ASD. Further investigations are warranted to identify the physiologic mechanisms underlying these findings. Level of Evidence: III.”

https://pubmed.ncbi.nlm.nih.gov/35821925/

“Compared to patients with ASD who underwent TLF without baseline cannabis use, patients with isolated baseline cannabis use were found to have no increase in odds of incurring 90-day surgical complications or readmissions or revisions two years postoperatively, though reduced odds of experiencing 90-day medical complications were observed.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210439/

Impact of the cannabinoid system in Alzheimer’s diseases

Generic placeholder image

“Cannabinoids are compounds that were initially isolated from cannabis marihuana and are also widely present in both nervous and immune systems of animals.

In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease.

Alzheimer’s disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today.

In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer’s disease.

How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer’s disease, the roles of the endocannabinoid system in Alzheimer’s disease are outlined, and the underlying mechanisms are discussed.

Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer’s disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer’s disease.”

https://pubmed.ncbi.nlm.nih.gov/35105293/

https://www.eurekaselect.com/article/120593

The Memory Benefit to Aged APP/PS1 Mice from Long-Term Intranasal Treatment of Low-Dose THC

ijms-logo

“THC has been used as a promising treatment approach for neurological disorders, but the highly psychoactive effects have largely warned off many scientists from pursuing it further. We conducted an intranasal treatment using low-dose THC on 12-month-old APP/PS1 mice daily for 3 months to overcome any potential psychoactive response induced by the systemic delivery.

Our results demonstrate that the THC nasal treatment at 0.002 and 0.02 mg/kg significantly slowed the memory decline compared to that in the vehicle-treated transgenic mouse control group.

An enzyme-linked immunosorbent assay showed that the Aβ1-40 and 1-42 peptides decreased in the THC-treated groups. The Western blot data indicate that long-term low-dose THC intranasal administration promoted p-tau level reduction and mitochondrial function marker redistribution. The blood biochemical parameter data demonstrate some insignificant changes in cytokine, immunoglobulin, and immune cell profiles during intranasal THC treatment.

Intranasal delivery is a non-invasive and convenient method that rapidly targets therapeutics to the brain, minimizing systemic exposure to avoid unwanted adverse effects. Our study provides new insights into the role of low-dose THC intranasal treatment as a pharmacological strategy to counteract alterations in Alzheimer’s disease-related cognitive performance.”

https://pubmed.ncbi.nlm.nih.gov/35457070/

https://www.mdpi.com/1422-0067/23/8/4253

“Low-Dose Delta-9-Tetrahydrocannabinol as Beneficial Treatment for Aged APP/PS1 Mice.  In conclusion, treatment with THC at 0.2 and 0.02 mg/kg improved the spatial learning of aged APP/PS1 mice, suggesting low-dose THC is a safe and effective treatment for AD.”

https://pubmed.ncbi.nlm.nih.gov/35269905/

Cannabinoid extract in microdoses ameliorates mnemonic and nonmnemonic Alzheimer’s disease symptoms: a case report

ISRCTN - Publish with BioMed Central

“Background: Cannabinoid-based therapy has been shown to be promising and is emerging as crucial for the treatment of cognitive deficits, mental illnesses, and many diseases considered incurable. There is a need to find an appropriate therapy for Alzheimer’s disease, and cannabinoid-based therapy appears to be a feasible possibility.

Case presentation: This report addresses the beneficial effect of cannabinoids in microdoses on improving memory and brain functions of a patient with mild-stage Alzheimer’s disease. The patient is a 75-year-old white man presenting with main symptoms of memory deficit, spatial and temporal disorientation, and limited daily activity. The experimental therapeutic intervention was carried out for 22 months with microdoses of a cannabis extract containing cannabinoids. Clinical evaluations using Mini-Mental State Examination and Alzheimer’s Disease Assessment Scale-Cognitive Subscale were performed.

Conclusions: Here we provide original evidence that cannabinoid microdosing could be effective as an Alzheimer’s disease treatment while preventing major side effects. This is an important step toward dissociating cannabinoids’ health-improving effects from potential narcotic-related limitations.”

https://pubmed.ncbi.nlm.nih.gov/35820856/

“In summary, data presented in this case report suggest that cannabinoid microdosing is a potential therapeutic for AD, with no significant side effects, although placebo-controlled clinical trials are needed to confirm and extend these data.”

https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-022-03457-w

Potential of cannabinoids as treatments for autism spectrum disorders

Journal of Psychiatric Research

“Current treatments for autism spectrum disorders (ASD) are limited in efficacy and are often associated with substantial side effects. These medications typically ameliorate problem behaviors associated with ASD, but do not target core symptom domains. As a result, there is a significant amount of research underway for development of novel experimental therapeutics.

Endocannabinoids are arachidonic acid-derived lipid neuromodulators, which, in combination with their receptors and associated metabolic enzymes, constitute the endocannabinoid (EC) system. Cannabinoid signaling may be involved in the social impairment and repetitive behaviors observed in those with ASD. In this review, we discuss a possible role of the EC system in excitatory-inhibitory (E-I) imbalance and immune dysregulation in ASD.

Novel treatments for the core symptom domains of ASD are needed and phytocannabinoids could be useful experimental therapeutics for core symptoms and associated domains.”

https://pubmed.ncbi.nlm.nih.gov/33689997/

“Novel treatments for the core symptom domains of ASD are needed, and the endocannabinoid (EC) system could be a target for those therapies through the administration of exogenous cannabinoids.”

https://www.sciencedirect.com/science/article/abs/pii/S0022395621001266?via%3Dihub

“Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story” https://pubmed.ncbi.nlm.nih.gov/33358985/

The role of the endocannabinoid system as a therapeutic target for autism spectrum disorder: Lessons from behavioral studies on mouse models

Neuroscience & Biobehavioral Reviews

“Recent years have seen an impressive amount of research devoted to understanding the etiopathology of Autism Spectrum Disorder (ASD) and developing therapies for this syndrome. Because of the lack of biomarkers of ASD, this work has been largely based on the behavioral characterization of rodent models, based on a multitude of genetic and environmental manipulations.

Here we highlight how the endocannabinoid system (ECS) has recently emerged within this context of mouse behavioral studies as an etiopathological factor in ASD and a valid potential therapeutic target.

We summarize the most recent results showing alterations of the ECS in rodent models of ASD, and demonstrating ASD-like behaviors in mice with altered ECS, induced either by genetic or pharmacological manipulations. We also give a critical overview of the most relevant advances in designing treatments and novel mouse models for ASD targeting the ECS, highlighting the relevance of thorough and innovative behavioral approaches to investigate the mechanisms acting underneath the complex features of ASD.”

https://pubmed.ncbi.nlm.nih.gov/34813825/

“Autism Spectrum Disorder (ASD) is a complex pathology with unknown aetiology and developing therapeutic approaches.•

Recent mouse behavioural studies have highlighted the role of the endocannabinoid system (ECS) in ASD.•

Novel pharmacological treatments and new genetic mouse models for ASD can be identified and designed by targeting the ECS.”

https://www.sciencedirect.com/science/article/abs/pii/S014976342100525X?via%3Dihub


Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious?

molecules-logo

“Persistent deficits in social communication and interaction, and restricted, repetitive patterns of behavior, interests or activities, are the core items characterizing autism spectrum disorder (ASD). Strong inflammation states have been reported to be associated with ASD.

The endocannabinoid system (ECS) may be involved in ASD pathophysiology. This complex network of lipid signaling pathways comprises arachidonic acid and 2-arachidonoyl glycerol-derived compounds, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. Alterations of the ECS have been reported in both the brain and the immune system of ASD subjects.

ASD children show low EC tone as indicated by low blood levels of endocannabinoids. Acetaminophen use has been reported to be associated with an increased risk of ASD. This drug can act through the ECS to produce analgesia. It may be that acetaminophen use in children increases the risk for ASD by interfering with the ECS.”

https://pubmed.ncbi.nlm.nih.gov/33805951/

https://www.mdpi.com/1420-3049/26/7/1845

“Can autism be triggered by acetaminophen activation of the endocannabinoid system? Acetaminophen use in children has been associated with increased autism risk. Recent evidence suggests that acetaminophen’s analgesic actions result from activation of the endocannabinoid system, and activation of this system can have neuromodulatory consequences during development. This investigation was performed to determine if there is evidence to support the hypothesis that acetaminophen use can trigger autism by activation of the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/20628445/

“Paracetamol (N-acetyl-p-aminophenol (APAP), otherwise known as acetaminophen) is the active ingredient in more than 600 medications used to relieve mild to moderate pain and reduce fever. APAP is widely used by pregnant women as governmental agencies, including the FDA and EMA, have long considered APAP appropriate for use during pregnancy when used as directed. However, increasing experimental and epidemiological research suggests that prenatal exposure to APAP might alter fetal development, which could increase the risks of some neurodevelopmental, reproductive and urogenital disorders.”

https://pubmed.ncbi.nlm.nih.gov/34556849/

“Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story” https://pubmed.ncbi.nlm.nih.gov/33358985/

Cannabidiol-Treated Ovariectomized Mice Show Improved Glucose, Energy, and Bone Metabolism With a Bloom in Lactobacillus

Frontiers - Crunchbase Company Profile & Funding

“Loss of ovarian 17β-estradiol (E2) in postmenopause is associated with gut dysbiosis, inflammation, and increased risk of cardiometabolic disease and osteoporosis. The risk-benefit profile of hormone replacement therapy is not favorable in postmenopausal women therefore better treatment options are needed.

Cannabidiol (CBD), a non-psychotropic phytocannabinoid extracted from hemp, has shown pharmacological activities suggesting it has therapeutic value for postmenopause, which can be modeled in ovariectomized (OVX) mice.

We evaluated the efficacy of cannabidiol (25 mg/kg) administered perorally to OVX and sham surgery mice for 18 weeks. Compared to VEH-treated OVX mice, CBD-treated OVX mice had improved oral glucose tolerance, increased energy expenditure, improved whole body areal bone mineral density (aBMD) and bone mineral content as well as increased femoral bone volume fraction, trabecular thickness, and volumetric bone mineral density. Compared to VEH-treated OVX mice, CBD-treated OVX mice had increased relative abundance of fecal Lactobacillus species and several gene expression changes in the intestine and femur consistent with reduced inflammation and less bone resorption.

These data provide preclinical evidence supporting further investigation of CBD as a therapeutic for postmenopause-related disorders.”

https://pubmed.ncbi.nlm.nih.gov/35800441/

“In conclusion, our results indicate that CBD treatment of OVX mice impacts the immune system and the gut microbiota to improve energy metabolism and bone homeostasis. These data indicate that CBD modulates a gut-bone axis to favorably alleviate several chronic disease symptoms of postmenopause.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.900667/full

The Combination of Δ 9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins

cancers-logo

“Phytocannabinoids represent a promising approach in glioblastoma therapy.

Previous work has shown that a combined treatment of glioblastoma cells with submaximal effective concentrations of psychoactive Δ9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD) greatly increases cell death.

In the present work, the glioblastoma cell lines U251MG and U138MG were used to investigate whether the combination of THC and CBD in a 1:1 ratio is associated with a disruption of cellular energy metabolism, and whether this is caused by affecting mitochondrial respiration.

Here, the combined administration of THC and CBD (2.5 µM each) led to an inhibition of oxygen consumption rate and energy metabolism. These effects were accompanied by morphological changes to the mitochondria, a release of mitochondrial cytochrome c into the cytosol and a marked reduction in subunits of electron transport chain complexes I (NDUFA9, NDUFB8) and IV (COX2, COX4). Experiments with receptor antagonists and inhibitors showed that the degradation of NDUFA9 occurred independently of the activation of the cannabinoid receptors CB1, CB2 and TRPV1 and of usual degradation processes mediated via autophagy or the proteasomal system.

In summary, the results describe a previously unknown mitochondria-targeting mechanism behind the toxic effect of THC and CBD on glioblastoma cells that should be considered in future cancer therapy, especially in combination strategies with other chemotherapeutics.”

https://pubmed.ncbi.nlm.nih.gov/35804909/

“Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L. that exhibits no psychoactivity and, like the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC), shows anticancer effects in preclinical cell and animal models. Previous studies have indicated a stronger cancer-targeting effect when THC and CBD are combined. Here, we investigated how the combination of THC and CBD in a 1:1 ratio affects glioblastoma cell survival. The compounds were found to synergistically enhance cell death, which was attributed to mitochondrial damage and disruption of energy metabolism. A detailed look at the mitochondrial electron transfer chain showed that THC/CBD selectively decreased certain subunits of complexes I and IV. These data highlight the fundamental changes in cellular energy metabolism when cancer cells are exposed to a mixture of cannabinoids and underscore the potential of combining cannabinoids in cancer treatment.”

https://www.mdpi.com/2072-6694/14/13/3129