Cannabidiol Reduces Short- and Long-Term High Glutamate Release after Severe Traumatic Brain Injury and Improves Functional Recovery

pharmaceutics-logo

“This study aimed to determine if orally administered cannabidiol (CBD) lessens the cortical over-release of glutamate induced by a severe traumatic brain injury (TBI) and facilitates functional recovery. The short-term experiment focused on identifying the optimal oral pretreatment of CBD. Male Wistar rats were pretreated with oral administration of CBD (50, 100, or 200 mg/kg) daily for 7 days. Then, extracellular glutamate concentration was estimated by cortical microdialysis before and immediately after a severe TBI. The long-term experiment focused on evaluating the effect of the optimal treatment of CBD (pre- vs. pre- and post-TBI) 30 days after trauma. Sensorimotor function, body weight, and mortality rate were evaluated. In the short term, TBI induced a high release of glutamate (738% ± 173%; p < 0.001 vs. basal).

Oral pretreatment with CBD at all doses tested reduced glutamate concentration but with higher potency at when animals received 100 mg/kg (222 ± 33%, p < 0.01 vs. TBI), an effect associated with a lower mortality rate (22%, p < 0.001 vs. TBI). In the long-term experiment, the TBI group showed a high glutamate concentration (149% p < 0.01 vs. SHAM). In contrast, animals receiving the optimal treatment of CBD (pre- and pre/post-TBI) showed glutamate concentrations like the SHAM group (p > 0.05). This effect was associated with high sensorimotor function improvement. CBD pretreatment, but not pre-/post-treatment, induced a higher body weight gain (39% ± 2.7%, p < 0.01 vs. TBI) and lower mortality rate (22%, p < 0.01 vs. TBI).

These results support that orally administered CBD reduces short- and long-term TBI-induced excitotoxicity and facilitated functional recovery. Indeed, pretreatment with CBD was sufficient to lessen the adverse sequelae of TBI.”

https://pubmed.ncbi.nlm.nih.gov/36015236/

“CBD administration decreases short- and long-term glutamate over-release after severe TBI, an effect associated with improvement of sensorimotor activity and body weight gain, as well as lower mortality. Future studies are essential to elucidate the mechanisms via which CBD exerts these effects and whether other mechanisms, such as antiinflammation, antioxidative stress, and neuroprotection, are involved. Our study suggests a neuroprotective effect of CBD short- and long-term after a severe TBI. These findings support orally administered CBD as a therapeutic strategy to prevent long-term consequences after TBI in the high-risk population, such as military personnel and contact sport athletes. It will also be interesting to determine if CBD neuroprotection is sufficient to prevent the development of long-term disorders following TBI, such as Alzheimer’s disease, Parkinson’s disease, and post-traumatic epilepsy.”

https://www.mdpi.com/1999-4923/14/8/1609/htm

Cannabinoids and Chronic Liver Diseases

ijms-logo

“Nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease (ALD), and viral hepatitis are the main causes of morbidity and mortality related to chronic liver diseases (CLDs) worldwide. New therapeutic approaches to prevent or reverse these liver disorders are thus emerging.

Although their etiologies differ, these CLDs all have in common a significant dysregulation of liver metabolism that is closely linked to the perturbation of the hepatic endocannabinoid system (eCBS) and inflammatory pathways. Therefore, targeting the hepatic eCBS might have promising therapeutic potential to overcome CLDs.

Experimental models of CLDs and observational studies in humans suggest that cannabis and its derivatives may exert hepatoprotective effects against CLDs through diverse pathways. However, these promising therapeutic benefits are not yet fully validated, as the few completed clinical trials on phytocannabinoids, which are thought to hold the most promising therapeutic potential (cannabidiol or tetrahydrocannabivarin), remained inconclusive. Therefore, expanding research on less studied phytocannabinoids and their derivatives, with a focus on their mode of action on liver metabolism, might provide promising advances in the development of new and original therapeutics for the management of CLDs, such as NAFLD, ALD, or even hepatitis C-induced liver disorders.”

https://pubmed.ncbi.nlm.nih.gov/36012687/

“Given the significant contribution of the hepatic eCBS and its downstream pathways in the regulation of liver metabolism and the setting of liver abnormalities, pharmacologically targeting peripheral CBRs may have promising potential therapeutic benefits for the treatment of CLDs. Besides this, the use of cannabis by people at risk of developing chronic liver disorders has also suggested hepatoprotective effects by reducing the frequency of NAFLD, ALD, or HCV-induced liver disorders, which would suggest that cannabinoid-based medicine may be effective in treating CLDs.”

https://www.mdpi.com/1422-0067/23/16/9423/htm

Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility

cells-logo

“Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases.

Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition.

The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.”

https://pubmed.ncbi.nlm.nih.gov/36010645/

“There is a great potential to use CBs and their metabolites and non-cannabinoid dual CBRs/PPAR agonists as novel interventions for PCOS and related disorders. PCOS pathophysiology is complex and poorly understood. We demonstrate that the ECS and PPARs play an important role in the pathogenesis of PCOS (including mtCB1R). The complexity of the ECS and the PPARs will allow the development of diverse therapeutic modalities targeting these interrelated systems. Further, these interventions can be used to develop personalized approaches to treatment based on individual patient characteristics.”

https://www.mdpi.com/2073-4409/11/16/2569/htm

Minor Phytocannabinoids: A Misleading Name but a Promising Opportunity for Biomedical Research

biomolecules-logo

“Despite the very large number of phytocannabinoids isolated from Cannabis (Cannabis sativa L.), bioactivity studies have long remained focused on the so called “Big Four” [Δ9-THC (1), CBD (2), CBG (3) and CBC (4)] because of their earlier characterization and relatively easy availability via isolation and/or synthesis. Bioactivity information on the chemical space associated with the remaining part of the cannabinome, a set of ca 150 compounds traditionally referred to as “minor phytocannabinoids”, is scarce and patchy, yet promising in terms of pharmacological potential. According to their advancement stage, we sorted the bioactivity data available on these compounds, better referred to as the “dark cannabinome”, into categories: discovery (in vitro phenotypical and biochemical assays), preclinical (animal models), and clinical. Strategies to overcome the availability issues associated with minor phytocannabinoids are discussed, as well as the still unmet challenges facing their development as mainstream drugs.”

https://pubmed.ncbi.nlm.nih.gov/36008978/

https://www.mdpi.com/2218-273X/12/8/1084/htm

Hemp ( Cannabis sativa L., Kompolti cv.) and Hop ( Humulus lupulus L., Chinook cv.) Essential Oil and Hydrolate: HS-GC-MS Chemical Investigation and Apoptotic Activity Evaluation

pharmaceuticals-logo

“In this study, essential oils (EOs) and hydrolates (Hys) from Italian hemp (Cannabis sativa L. Kompolti cv.) and hop (Humulus Lupulus L., Chinook cv.) supply chains were chemically characterized and tested to investigate their apoptotic potential for the first time. Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS) techniques were performed to describe their volatile chemical profile, highlighting a composition rich in terpene derivatives such as monoterpenes and sesquiterpenes among which β-myrcene, limonene, β-caryophyllene and α-humulene were the main constituents of EOs; in contrast, linalool, cisp-menth-2,8-dien-1-ol, terpinen-4-ol, α-terpineol, caryophyllene oxide, and τ-cadinol were found in the Hys.

The cytotoxicity activity on human leukemia cells (HL60), human neuroblastoma cells (SH-SY5Y), human metastatic adenocarcinoma breast cells (MCF7), human adenocarcinoma breast cells (MDA), and normal breast epithelial cell (MCF10A) for the EOs and Hys was studied by MTT assay and cytofluorimetric analysis and scanning and transmission electron microscopy were performed to define ultrastructural changes and the mechanism of cells death for HL 60 cells.

An induction of the apoptotic mechanism was evidenced for hemp and hop EOs after treatment with the corresponding EC50 dose. In addition, TEM and SEM investigations revealed typical characteristics induced by the apoptotic pathway. Therefore, thanks to the integration of the applied methodologies with the used techniques, this work provides an overview on the metabolomic profile and the apoptotic potential of hemp and hop EOs and, for the first time, also of Hys.

The findings of this preliminary study confirm that the EOs and Hys from Cannabis and Humulus species are sources of bioactive molecules with multiple biological effects yet to be explored.”

https://pubmed.ncbi.nlm.nih.gov/36015124/

https://www.mdpi.com/1424-8247/15/8/976/htm

Phytochemical Characterization of Cannabis sativa L. Chemotype V Reveals Three New Dihydrophenanthrenoids That Favorably Reprogram Lipid Mediator Biosynthesis in Macrophages

plants-logo

“The growing general interest surrounding Cannabis sativa L. has led to a renewal in breeding and resulted in an impressive variability of chemotypical characteristics that required the division of cannabis into different recognized chemotypes. The chemotype V has been overlooked in terms of phytochemical composition due to the almost total absence of cannabinoids, on which biomedical attention is focused. Systematic approaches addressing diverse chemotypes are, however, needed to discriminate and define phytochemical aspects beyond cannabinoids. Such thoroughly characterized chemotypes guarantee blinding in controlled studies by mimicking the sensory properties of hemp and may help to unravel the “entourage effect”. Capitalizing on the ability of cannabis to synthesize a large number of non-cannabinoid phenolic compounds, we here investigated, for the first time, the composition of the Ermo chemotype V and identified new compounds: two dihydrophenanthrenes and the methoxy-dihydrodenbinobin. All three compounds suppress pro-inflammatory leukotriene biosynthesis in activated macrophage subtypes by targeting 5-lipoxygenase, but substantially differ in their capacity to elevate the levels of specialized pro-resolving lipid mediators and their precursors in M2 macrophages. We conclude that the discovered compounds likely contribute to the anti-inflammatory properties of Cannabis sativa L. chemotype V and might promote inflammation resolution by promoting a lipid mediator class switch.”

https://pubmed.ncbi.nlm.nih.gov/36015434/

https://www.mdpi.com/2223-7747/11/16/2130/htm

Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications

pharmaceutics-logo

“In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.”

https://pubmed.ncbi.nlm.nih.gov/36015263/

https://www.mdpi.com/1999-4923/14/8/1637/htm

Potential Combinatory Effect of Cannabidiol and Triclosan Incorporated into Sustained Release Delivery System against Oral Candidiasis

pharmaceutics-logo

“Candida albicans is a common fungal pathogen. Biofilm formation on various surfaces is an important determinant of C. albicans pathogenicity. Our previous results demonstrated the high potential of cannabidiol (CBD) to affect C. albicans biofilms. Based on these data, we investigated the possibility of incorporating CBD and/or triclosan (an antimicrobial agent that is widely utilized in dentistry) in a sustained-release varnish (SRV) (SRV-CBD, SRV-triclosan) to increase their pharmaceutical potential against C. albicans biofilm, as well as that of the mixture of the agents into SRV (SRV-CBD/triclosan). The study was conducted in a plastic model, on agar, and in an ex vivo tooth model. Our results demonstrated strong antibiofilm activity of SRV-CBD and SRV-triclosan against C. albicans in all tested models. Both formulations were able to inhibit biofilm formation and to remove mature fungal biofilm. In addition, SRV-CBD and SRV-triclosan altered C. albicans morphology. Finally, we observed a dramatic enhancement of antibiofilm activity when combined SRV-CBD/triclosan was applied. In conclusion, we propose that incorporation of CBD or triclosan into SRV is an effective strategy to fight fungal biofilms. Importantly, the data demonstrate that our CBD/triclosan varnish is safe, and is not cytotoxic for normal mammalian cells. Furthermore, we propose that CBD and triclosan being in mixture in SRV exhibit complementary antibiofilm activity, and thus can be explored for further development as a potential treatment against fungal infections.”

https://pubmed.ncbi.nlm.nih.gov/36015249/

“Our results have demonstrated, for the first time, the high potential of a combination of non-fungicidal agents, such as CBD and triclosan, incorporated into an SRV against C. albicans biofilm, as a useful anti-biofilm modality.”

https://www.mdpi.com/1999-4923/14/8/1624/htm

The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics

biomedicines-logo

“Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.”

https://pubmed.ncbi.nlm.nih.gov/36009504/

https://www.mdpi.com/2227-9059/10/8/1959/htm

Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin

antibiotics-logo

“Plant-based natural compounds (PBCs) are comparatively explored in this study to identify the most effective and safe antibacterial agent/s against six World Health Organization concern pathogens. Based on a contained systematic review, 11 of the most potent PBCs as antibacterial agents are included in this study. The antibacterial and antibiofilm efficacy of the included PBCs are compared with each other as well as common antibiotics (ciprofloxacin and gentamicin). The whole plants of two different strains of Cannabis sativa are extracted to compare the results with sourced ultrapure components. Out of 15 PBCs, tetrahydrocannabinol, cannabidiol, cinnamaldehyde, and carvacrol show promising antibacterial and antibiofilm efficacy. The most common antibacterial mechanisms are explored, and all of our selected PBCs utilize the same pathway for their antibacterial effects. They mostly target the bacterial cell membrane in the initial step rather than the other mechanisms. Reactive oxygen species production and targeting [Fe-S] centres in the respiratory enzymes are not found to be significant, which could be part of the explanation as to why they are not toxic to eukaryotic cells. Toxicity and antioxidant tests show that they are not only nontoxic but also have antioxidant properties in Caenorhabditis elegans as an animal model.”

https://pubmed.ncbi.nlm.nih.gov/36009966/

“Some of the PBCs tested, including THC, CBD, cinnamaldehyde, and carvacrol, showed quite promising antibacterial and antibiofilm potency in comparison with common antibiotics (ciprofloxacin and gentamicin). They are not only non-toxic but also have antioxidant properties as well.”

https://www.mdpi.com/2079-6382/11/8/1099/htm