Acyclic Diterpene Phytol from Hemp Seed Oil ( Cannabis sativa L.) Exerts Anti-Inflammatory Activity on Primary Human Monocytes-Macrophages

foods-logo

“Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages.

Fresh human monocytes and human macrophages derived from circulating monocytes were used to evaluate both plasticity and anti-inflammatory effects of phytol from HSO at 10-100 mM using FACS analysis, ELISA, and RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO).

Phytol was able to skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++ monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce the production of IL-1β, IL-6, and TNF-α, diminishing the inflammatory competence of mature human macrophages after lipopolysaccharide (LPS) treatment.

These findings point out for the first time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages. In addition, our study may help to understand the mechanisms by which phytol from HSO contributes to the constant and progressive plasticity of the human monocyte-macrophage linage.”

https://pubmed.ncbi.nlm.nih.gov/35954130/

“These results showed that phytol, which was isolated and identified for the first time in HSO, can help to better understand the specific mechanism by which this acyclic diterpene exerts beneficial effects on monocyte-macrophage plasticity. So far, HSO has already been demonstrated to include healthy polyunsaturated fatty acids, as well as antioxidant tocopherols and anti-inflammatory phytosterols in its unsaponifiable fraction. In recent years, inflammation has emerged as a leading pathophysiologic mechanism in atherosclerosis and other diseases, so the effects of phytol on different hallmarks of the inflammatory response contribute to the recommendation of HSO as an interesting source of functional compounds.”

https://www.mdpi.com/2304-8158/11/15/2366/htm

Intrathecal Actions of the Cannabis Constituents Δ(9)-Tetrahydrocannabinol and Cannabidiol in a Mouse Neuropathic Pain Model

ijms-logo

“Background: The psychoactive and non-psychoactive constituents of cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), synergistically reduce allodynia in various animal models of neuropathic pain. Unfortunately, THC-containing drugs also produce substantial side-effects when administered systemically. We examined the effectiveness of targeted spinal delivery of these cannabis constituents, alone and in combination.

Methods: The effect of acute intrathecal drug delivery on allodynia and common cannabinoid-like side-effects was examined in a mouse chronic constriction injury (CCI) model of neuropathic pain.

Results: intrathecal THC and CBD produced dose-dependent reductions in mechanical and cold allodynia. In a 1:1 combination, they synergistically reduced mechanical and cold allodynia, with a two-fold increase in potency compared to their predicted additive effect. Neither THC, CBD nor combination THC:CBD produced any cannabis-like side-effects at equivalent doses. The anti-allodynic effects of THC were abolished and partly reduced by cannabinoid CB1 and CB2 receptor antagonists AM281 and AM630, respectively. The anti-allodynic effects of CBD were partly reduced by AM630.

Conclusions: these findings indicate that intrathecal THC and CBD, individually and in combination, could provide a safe and effective treatment for nerve injury induced neuropathic pain.”

https://pubmed.ncbi.nlm.nih.gov/35955774/

“The present findings indicate that intrathecal delivery of the phytocannabinoids THC and CBD reduces the mechanical and cold allodynia associated with a nerve injury induced model of neuropathic pain. Interestingly, THC and CBD acted synergistically to reduce allodynia, leading to a substantial increase in their anti-allodynic potency. In addition, both THC and CBD were devoid of the cannabis-like side-effects associated with the systemic delivery of THC-containing cannabinoids. These findings indicate that spinal delivery of the primary phytocannabinoids of the plant Cannabis sativa has potential in the treatment of chronic neuropathic pain.”

https://www.mdpi.com/1422-0067/23/15/8649/htm

Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders

molecules-logo

“The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines.

Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease.

A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood.

This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules.

The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.”

https://pubmed.ncbi.nlm.nih.gov/35956911/

“Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. The preclinical studies summarised in this review supported the therapeutic use of CBD in treating neurological disorders from its action in addressing microglia-mediated neuroinflammation. The findings of this review shed light on the development of CBD and relevant compounds as novel and more advantageous therapeutics to prevent or treat neurological disorders by targeting microglia-mediated neuroinflammation.”

https://www.mdpi.com/1420-3049/27/15/4961/htm


Medicinal Cannabis for the Treatment of Chronic Refractory Pain: An Investigation of the Adverse Event Profile and Health-Related Quality of Life Impact of an Oral Formulation

Karger Publishers Further Expands into Open Access and Open Science | STM  Publishing News

“Introduction: Medicinal cannabis is prescribed in Australia for patients with chronic refractory pain conditions. However, measures of safety and effectiveness of different cannabinoids are lacking. We designed an observational study to capture effectiveness, adverse events (AEs), and health-related quality of life (HRQoL) measures in patients prescribed an oral medicinal cannabis formulation at Cannabis Access Clinics through the Cannabis Access Clinics Observational study (CACOS).

Objectives: We aimed to evaluate effectiveness, reported AEs, and change in patient-reported outcomes in individuals prescribed a cannabinoid oil formulation for management of chronic pain.

Methods: A cross-sectional analysis was conducted on patients prescribed an oil formulation of Δ9-tetrahydrocannabinol and cannabidiol for pain symptoms of at least 3-month duration. Clinician-reported AEs were organized by system, organ, class, and frequency. Analysis of patient-reported responses to a questionnaire was conducted using published minimal clinically important differences to determine meaningful change in HRQoL over time.

Results: More than half (n = 91/151, 60.3%) of the participants experienced at least one AE during the observation period (mean 133 ± 116 days). No serious AEs were reported. Patient-reported pain impact scores were significantly reduced across the cohort (p = 0.034), and pain intensity scores verged on significance (p = 0.053). The majority of patients saw meaningful improvements in sleep (49.3%) and fatigue (35.6%).

Conclusion: This analysis presents real-world data collected as part of standard of care. More than one-third of patients benefited from oral medicinal cannabis, which is impactful given the refractory nature of their pain. Amelioration of the impact of pain confirms continued prescribing of this formulation and validates our observational methodology as a tool to determine the therapeutic potency of medicinal cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/35950052/

“This is a clinically relevant finding considering that this patient cohort comprises refractory cases where relief has not been obtained with existing medications, including opioids, NSAIDs, and steroids.”

https://www.karger.com/Article/FullText/521492

Affinity selection-mass spectrometry in the discovery of anti-SARS-CoV-2 compounds

Mass Spectrometry Reviews

“Small molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is the cause of the COVID-19 pandemic.

To expedite the discovery of lead compounds for development, assays have been developed based on affinity selection-mass spectrometry (AS-MS), which enables the rapid screening of mixtures such as combinatorial libraries and extracts of botanicals or other sources of natural products. AS-MS assays have been used to find ligands to the SARS-CoV-2 spike protein for inhibition of cell entry as well as to the 3-chymotrypsin-like cysteine protease (3CLpro) and the RNA-dependent RNA polymerase complex constituent Nsp9, which are targets for inhibition of viral replication.

The AS-MS approach of magnetic microbead affinity selection screening has been used to discover high-affinity peptide ligands to the spike protein as well as the hemp cannabinoids cannabidiolic acid and cannabigerolic acid, which can prevent cell infection by SARS-CoV-2.

Another AS-MS method, native mass spectrometry, has been used to discover that the flavonoids baicalein, scutellarein, and ganhuangenin, can inhibit the SARS-CoV-2 protease 3CLpro. Native mass spectrometry has also been used to find an ent-kaurane natural product, oridonin, that can bind to the viral protein Nsp9 and interfere with RNA replication.

These natural lead compounds are under investigation for the development of therapeutic agents to prevent or treat SARS-CoV-2 infection.”

https://pubmed.ncbi.nlm.nih.gov/35929396/

https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mas.21800

Effects of Nabilone on Sleep Outcomes in Patients with Parkinson’s Disease: A Post-hoc Analysis of NMS-Nab Study

“Background: The synthetic tetrahydrocannabinol analogue nabilone improved overall non-motor symptom (NMS) burden in Parkinson’s disease (PD) patients in comparison to placebo.

Objectives: To characterize the effects of nabilone on different sleep outcomes in PD patients.

Methods: We performed a post-hoc analysis of the controlled, double-blind, enriched enrollment randomized withdrawal NMS-Nab study to assess the effects of nabilone on sleep outcomes in study participants who reported clinically-relevant sleep problems (MDS-UPDRS-1.7 ≥ 2 points).

Results: After open-label nabilone administration, 77.4% reported no relevant sleep problem. In the withdrawal phase of the trial, the MDS-UPDRS-1.7. and the NMS-Scale Domain 2 (i.e., Sleep/Fatigue) significantly worsened only in PD patients in the placebo group, which was mostly driven by a significant worsening of insomnia (question 5 of the NMS-Scale Domain 2).

Conclusions: This post-hoc analysis of the NMS-Nab trial suggests that nabilone has beneficial effects on sleep outcomes in PD patients experiencing sleep problems at baseline.”

https://pubmed.ncbi.nlm.nih.gov/35937495/

“Despite the limitations, we found positive effect of nabilone on clinically-relevant sleep problems in PD.”

https://movementdisorders.onlinelibrary.wiley.com/doi/10.1002/mdc3.13471

Phytochemical differences of hemp ( Cannabis sativa L.) leaves from different germplasms and their regulatory effects on lipopolysaccharide-induced inflammation in Matin-Darby canine kidney cell lines

“The increasing demand of hemp (Cannabis sativa L.) has attracted more interest in exploring its phytochemical profile and bioactivities, such as anti-inflammatory effect. In this study, the phytochemicals of different hemp leaves were investigated, with the content order: total saponins content (TSC) > total alkaloids content (TAC) > total phenolics content (TPC) > total flavonoids content (TFC) > cannabinoids.

Hemp leaves from Shanxi accumulated higher flavonoids and cannabinoids (i.e., THC, CBD, and CBN), while phenolics were more abundant in those from Hunan. A lipopolysaccharide (LPS)-induced inflammatory Matin-Darby canine kidney (MDCK) cell model was established to evaluate the anti-inflammatory effects of hemp leaf extracts.

Hemp leaf extracts, especially the D129 and c7, significantly increased cell viability of LPS-induced inflammatory MDCK cells, and D132 significantly decreased the secretion of pro-inflammatory cytokines (TNF-α and IL-6) and the lactate dehydrogenase (LDH) activity. Except for c12, other hemp leaf extracts obviously decreased the cell morphological damage of LPS-induced inflammatory MDCK cells.

The correlation analysis revealed that cannabinol (CBN) and TPC showed the strongest correlation with anti-inflammatory activities, and hierarchical clustering analysis also showed that hemp germplasms from Shanxi might be good alternatives to the common cultivar Ym7 due to their better anti-inflammatory activities.

These results indicated that hemp leaves were effective in LPS-induced inflammatory MDCK cells, and flavonoids and cannabinoids were potential geographical markers for distinguishing them, which can provide new insights into the anti-inflammatory effect of hemp leaves and facilitate the application of hemp leaves as functional ingredients against inflammatory-related disorders.”

https://pubmed.ncbi.nlm.nih.gov/35938104/

“The current findings demonstrated that the contents of various phytochemicals in hemp leaves were generally descending from TSC > TAC > TPC > TFC > cannabinoids. In addition, hemp leaves (0.05 mg/mL), especially hemp leaves cultivated in Shanxi (D129, D130, D132, D134, D142, and D361), reduced the release of pro-inflammatory cytokines (TNF-α), reduced LDH levels, and inhibited the cell morphological changes and the membrane damage of LPS-induced inflammatory MDCK cells. Furthermore, correlation analysis indicated phenolics and CBN might be the leading contributors to protecting the MDCK cells from LPS-induced inflammation. Meanwhile, hierarchical clustering indicated hemp leaves from Shanxi performed a better anti-inflammatory activity than the common cultivar Ym7. Thus, it is suggested that these germplasms from Shanxi can be good alternatives to Ym7. Overall, the present study provides scientific evidence for the anti-inflammatory potential of hemp leaves, which can be used in nutraceuticals and functional foods.”

https://www.frontiersin.org/articles/10.3389/fnut.2022.902625/full


Synthetic cannabinoid poisonings and access to the legal cannabis market: findings from US national poison centre data 2016-2019

Publication Cover

“Aim: To investigate trends in synthetic cannabinoid exposures reported to United States (US) poison control centres, and their association with status of state cannabis legalisation.

Methods: A retrospective study of National Poison Data System (NPDS) data from 2016 to 2019 identified and associated synthetic poisoning reports with annual state cannabis law and market status. State status was categorised as restrictive (cannabis illegal or limited medical legalisation), medical (allowing THC-containing medical cannabis use) and permissive (allowing non-medical use of THC-containing cannabis by adults). We categorised a subset of states with permissive policies by their implementation of legal adult possession/use and opening retail markets, on a quarterly basis. Mixed-effects Poisson regression models assessed synthetic exposures associated with legal status, first among all states using annual counts, and then among states that implemented permissive law alone using quarterly counts.

Results: A total of 7600 exposures were reported during the study period. Overall, reported synthetic exposures declined over time. Most reported exposures (64.8%) required medical attention, and 61 deaths were documented. State implementation of medical cannabis law was associated with 13% fewer reported annual exposures. Adoption of permissive state cannabis policy was independently and significantly associated with 37% lower reported annual synthetic exposures, relative to restrictive policies (IRR: 0.63, 95% CI: 0.50-0.79). Among states with permissive law during the period, implementation of legal adult possession/use was associated with 22% fewer reported quarterly exposures. Opening of retail markets was associated with 36% fewer reported exposures, relative to states with medical cannabis only.

Conclusions: Adoption of permissive cannabis law was associated with significant reductions in reported synthetic cannabinoid exposures. More permissive cannabis law may have the unintended benefit of reducing both motivation and harms associated with use of synthetic cannabis products.”

https://pubmed.ncbi.nlm.nih.gov/35942512/

“The gradual reduction of prohibitions against plant-based cannabis offers an opportunity to study use of cannabis and powerful synthetic analogues that may have been used as natural cannabis substitutes. Our study identified an association between more liberal policies (legalisation) for natural cannabis and declines in reported synthetic cannabinoid poisonings. This finding suggests a potential effect of policy change on substance use behaviours that may have long-term public health implications.”

https://www.tandfonline.com/doi/full/10.1080/15563650.2022.2099887

Innovative treatments for epilepsy: Venom peptides, cannabinoids, and neurostimulation

“Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment.

Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life.

In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets.

Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy.

Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.”

https://pubmed.ncbi.nlm.nih.gov/35934922/

https://onlinelibrary.wiley.com/doi/10.1002/jnr.25114

Antitumor Effects of Cannabinoids in Human Pancreatic Ductal Adenocarcinoma Cell Line (Capan-2)-Derived Xenograft Mouse Model

“Background: Pancreatic cancer is considered a rare type of cancer, but the mortality rate is high. Cannabinoids extracted from the cannabis plant have been interested as an alternative treatment in cancer patients. Only a few studies are available on the antitumor effects of cannabinoids in pancreatic cancer. Therefore, this study aims to evaluate the antitumor effects of cannabinoids in pancreatic cancer xenografted mouse model.

Materials and methods: Twenty-five nude mice were subcutaneously transplanted with a human pancreatic ductal adenocarcinoma cell line (Capan-2). All mice were randomly assigned into 5 groups including negative control (gavage with sesame oil), positive control (5 mg/kg 5-fluorouracil intraperitoneal administration), and cannabinoids groups that daily received THC:CBD, 1:6 at 1, 5, or 10 mg/kg body weight for 30 days, respectively. Xenograft tumors and internal organs were collected for histopathological examination and immunohistochemistry.

Results: The average tumor volume was increased in all groups with no significant difference. The average apoptotic cells and caspase-3 positive cells were significantly increased in cannabinoid groups compared with the negative control group. The expression score of proliferating cell nuclear antigen in positive control and cannabinoids groups was decreased compared with the negative control group.

Conclusions: Cannabinoids have an antitumor effect on the Capan-2-derived xenograft mouse model though induce apoptosis and inhibit proliferation of tumor cells in a dose-dependent manner.”

https://pubmed.ncbi.nlm.nih.gov/35937289/

“In conclusion, cannabinoid treatment in mice was not affected by weight gain and blood profiles. It can induce apoptosis and inhibit the proliferation of human pancreatic ductal adenocarcinoma cells in a dose-dependent manner. This study suggested that cannabinoids have an antitumor effect on a human pancreatic ductal adenocarcinoma cell line (Capan-2)-derived xenograft mouse model.”

https://www.frontiersin.org/articles/10.3389/fvets.2022.867575/full