Effects of Cannabidiol on Adaptive Behavior and Quality of Life in Pediatric Patients With Treatment-Resistant Epilepsy

header

“Background and purpose: Data regarding the effects of cannabidiol (CBD) on the quality of life (QOL) are currently inadequate. We assessed the QOL of pediatric patients with epilepsy who were treated with CBD.

Methods: This prospective, open-label study included pediatric and adolescent patients (aged 2-18 years) with Dravet syndrome or Lennox-Gastaut syndrome. Oral CBD was administered at 10 mg/kg/day. The Korean version of the Quality Of Life in Childhood Epilepsy (QOLCE) questionnaire was administered when CBD treatment began and again after 6 months. Adaptive behavior was measured using the Korean versions of the Child Behavior Checklist (K-CBCL) and the second edition of the Vineland Adaptive Behavior Scales (Vineland-II).

Results: This study included 41 patients (11 with Dravet syndrome and 30 with Lennox-Gastaut syndrome), of which 25 were male. The median age was 4.1 years. After 6 months, 26.8% (11/41) of patients experienced a ≥50% reduction in the number of seizures. The total score for the QOLCE questionnaire did not change from baseline to after 6 months of CBD treatment (85.71±39.65 vs. 83.12±48.01, respectively; p=0.630). The score in the motor skills domain of Vineland-II reduced from 48.67±13.43 at baseline to 45.18±14.08 after 6 months of treatment (p=0.005). No other Vineland-II scores and no K-CBCL scores had changed after 6 months of CBD treatment.

Conclusions: CBD is an efficacious antiseizure drug used to treat Dravet syndrome and Lennox-Gastaut syndrome. However, it did not improve the patient QOL in our study, possibly because all of our patients had profound intellectual disabilities.”

https://pubmed.ncbi.nlm.nih.gov/36062772/

https://thejcn.com/DOIx.php?id=10.3988/jcn.2022.18.5.547

Social stress under binge-like alcohol withdrawal in adolescence: evidence of cannabidiol effect on maladaptive plasticity in rats

Psychological Medicine

“Background: Alcohol binge drinking may compromise the functioning of the nucleus accumbens (NAc), i.e. the neural hub for processing reward and aversive responses.

Methods: As socially stressful events pose particular challenges at developmental stages, this research applied the resident-intruder paradigm as a model of social stress, to highlight behavioural neuroendocrine and molecular maladaptive plasticity in rats at withdrawal from binge-like alcohol exposure in adolescence. In search of a rescue agent, cannabidiol (CBD) was selected due to its favourable effects on alcohol- and stress-related harms.

Results: Binge-like alcohol exposed intruder rats displayed a compromised defensive behaviour against the resident and a blunted response of the stress system, in addition to indexes of abnormal dopamine (DA)/glutamate plasticity and dysfunctional spine dynamics in the NAc. CBD administration (60 mg/kg) was able to: (1) increase social exploration in the binge-like alcohol exposed intruder rats, at the expenses of freezing time, and in control rats, which received less aggressive attacks from the resident; (2) reduce corticosterone levels independently on alcohol previous exposure; (3) restore DA transmission and (4) facilitate excitatory postsynaptic strength and remodelling.

Conclusions: Overall, the maladaptive behavioural and synaptic plasticity promoted by the intersection between binge-like alcohol withdrawal and exposure to adverse social stress can be rescued by a CBD détente effect that results in a successful defensive strategy, supported by a functional endocrine and synaptic plasticity. The current data highlight CBD’s relevant therapeutic potential in alcohol- and stress-related harms, and prompt further investigation on its molecular targets.”

https://pubmed.ncbi.nlm.nih.gov/36065905/

https://www.cambridge.org/core/journals/psychological-medicine/article/abs/social-stress-under-bingelike-alcohol-withdrawal-in-adolescence-evidence-of-cannabidiol-effect-on-maladaptive-plasticity-in-rats/0A68E4159FDCAF5592BD10DEC4DAC9F8

Long-term effects of a diet supplement containing Cannabis sativa oil and Boswellia serrata in dogs with osteoarthritis following physiotherapy treatments: a randomised, placebo-controlled and double-blind clinical trial

Publication Cover

“Dogs are commonly affected by Osteoarthritis (OA). Different approaches can be used to alleviate animals’ symptoms. In this randomised, placebo-controlled and double-blind clinical trial, we performed a three months follow-up study assessing the efficacy of a food supplement containing natural ingredients (Cannabis sativa oil, Boswellia serrata Roxb. Phytosome® and Zingiber officinale extract) in dogs with OA after the interruption of physiotherapy that was performed during the previous three months. Inflammation and oxidative stress were reduced in the treated group (higher glutathione (GSH) and lower C-reactive protein [CRP] levels in blood) as well as chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/36067506/

https://www.tandfonline.com/doi/abs/10.1080/14786419.2022.2119967?journalCode=gnpl20

Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance – Insights into engineering strategies

Phytochemistry

“Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel.

In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance.

We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites.

We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.”

https://pubmed.ncbi.nlm.nih.gov/36049526/

https://www.sciencedirect.com/science/article/abs/pii/S0031942222002965?via%3Dihub

The Long-Term Effectiveness and Safety of Cannabidiol-Enriched Oil in Children With Drug-Resistant Epilepsy

Pediatrics | Journal of Pediatric Neurology

“Background: Several retrospective studies on pediatric epilepsy reported positive effects of cannabidiol-enriched artisanal cannabis oil and pure cannabidiol oil on seizure reduction.

Methods: This is a retrospective study of children and adolescents with refractory epilepsy caused by various etiologies who were treated with artisanal cannabis oil during January 2014 to June 2019, with at least one year follow-up.

Results: Of 114 patients, 84 (73.3%) reported some improvement in seizure frequency at some point during treatment. Fifty-one (59%) of the 86 patients who continued treatment for at least one year showed >50% improvement in seizure frequency. Seizure etiology, seizure type, and patients’ age and sex were not found to be associated with the response to cannabidiol-enriched cannabis oil. Side effects were minor, and positive effects beyond seizure reduction were noted.

Conclusions: Artisanal cannabidiol-enriched cannabis may be an effective and safe long-term treatment for refractory epilepsy.”

https://pubmed.ncbi.nlm.nih.gov/36049378/

https://www.pedneur.com/article/S0887-8994(22)00122-9/fulltext

Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction

European Neuropsychopharmacology

“Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization.

Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown.

The present study addressed this question in contextually fear-conditioned female rats.

We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus.

CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.”

https://pubmed.ncbi.nlm.nih.gov/36049316/

https://www.sciencedirect.com/science/article/abs/pii/S0924977X22008367?via%3Dihub

Effort-based decision making and self-reported apathy in frequent cannabis users and healthy controls: A replication and extension

Publication Cover

“Introduction: Amotivational syndrome is a term used to refer to lack of motivation and passive personality related to chronic cannabis use. Given mixed findings, the current study aimed to replicate and extend previous research on frequent cannabis use, motivated behavior, and self-reported apathy.

Method: Cannabis users (on average, ≥3 days/week of cannabis use over the past year), and healthy controls (≤1 day/month of cannabis use over the past year) completed the Apathy Evaluation Scale (AES), and the Effort Expenditure for Rewards Task (EEfRT). Repeated measures analysis of covariance was used to 1) examine the effects of group, reward magnitude, probability, and their interaction on hard task selections on the EEfRT, and 2) examine between-group differences on the AES, controlling for alcohol use and depressive symptoms.

Results: There were significant main effects of reward magnitude, probability, and an interaction between reward magnitude and probability on hard task selection (p‘s < 0.05). Specifically, as reward magnitude and probability of winning the reward increased, participants were more likely to select hard tasks on the EEfRT. Relative to healthy controls, cannabis users were significantly more likely to select hard tasks on the EEfRT (F(1,56) = 6.49, p = 0.014, ηp2 = 0.10). When controlling for alcohol use and depressive symptoms, no significant group differences in self-reported apathy were present (p = 0.46).

Conclusions: Cannabis users exhibit a greater likelihood of exerting more effort for reward, suggesting enhanced motivation relative to healthy controls. Thus, the current results do not support amotivational syndrome in adult frequent cannabis users. Despite some harms of long-term cannabis use, amotivation may not be among them.”

https://pubmed.ncbi.nlm.nih.gov/35767680/

https://www.tandfonline.com/doi/abs/10.1080/13803395.2022.2093335?journalCode=ncen20

“Effort-related decision making and cannabis use among college students. The results provide preliminary evidence suggesting that college students who use cannabis are more likely to expend effort to obtain reward, even after controlling for the magnitude of the reward and the probability of reward receipt. Thus, these results do not support the amotivational syndrome hypothesis.”

https://pubmed.ncbi.nlm.nih.gov/35084912/

Anhedonia, apathy, pleasure, and effort-based decision-making in adult and adolescent cannabis users and controls

CINP Journal

“Background: Cannabis use may be linked with anhedonia and apathy. However, previous studies have shown mixed results and few have examined the association between cannabis use and specific reward sub-processes. Adolescents may be more vulnerable to harmful effects of cannabis than adults. This study investigated (1) the association between non-acute cannabis use and apathy, anhedonia, pleasure, and effort-based decision-making for reward, and (2) whether these relationships were moderated by age-group.

Methods: We used data from the ‘CannTeen’ study. Participants were 274 adult (26-29 years) and adolescent (16-17 years) cannabis users (1-7 days/week use in the past three months), and gender- and age-matched controls. Anhedonia was measured with the Snaith-Hamilton Pleasure Scale (n=274), and apathy was measured with the Apathy Evaluation Scale (n=215). Effort-based decision-making for reward was measured with the Physical Effort task (n=139), and subjective wanting and liking of rewards was measured with the novel Real Reward Pleasure task (n=137).

Results: Controls had higher levels of anhedonia than cannabis users (F1,258=5.35, p=.02, ηp2=.02). There were no other significant effects of User-Group and no significant User-Group*Age-Group interactions. Null findings were supported by post hoc Bayesian analyses.

Conclusion: Our results suggest that cannabis use at a frequency of three to four days per week is not associated with apathy, effort-based decision-making for reward, reward wanting, or reward liking in adults or adolescents. Cannabis users had lower anhedonia than controls, albeit at a small effect size. These findings are not consistent with the hypothesis that non-acute cannabis use is associated with amotivation.”

https://pubmed.ncbi.nlm.nih.gov/35999024/

https://academic.oup.com/ijnp/advance-article/doi/10.1093/ijnp/pyac056/6674260?login=false

“Cannabis users no more likely to lack motivation than non-users: Study breaks ‘stoner’ stereotype”

https://medicalxpress.com/news/2022-09-cannabis-users-lack-non-users-stoner.html

Cross-talk between neurosteroid and endocannabinoid systems in cannabis addiction

“Steroids and endocannabinoids are part of two modulatory systems and some evidence has shown their interconnections in several functions.

Homeostasis is a common steady-state described in the body, which is settled by regulatory systems to counterbalance deregulated or allostatic set points towards an equilibrium. This regulation is of primary significance in the central nervous system for maintaining neuronal plasticity and preventing brain-related disorders.

In this context, the recent discovery of the shutdown of the endocannabinoid system (ECS) overload by the neurosteroid pregnenolone has highlighted new endogenous mechanisms of ECS regulation related to cannabis-induced intoxication.

These mechanisms involve a regulatory loop mediated by overactivation of the central type-1 cannabinoid receptor (CB1R), which triggers the production of its own regulator, pregnenolone. Therefore, this highlights a new process of regulation of steroidogenesis in the brain.

Pregnenolone, long considered an inactive precursor of neurosteroids, can then act as an endogenous negative allosteric modulator of CB1R. The present review aims to shed light on a new framework for the role of ECS in the addictive characteristics of cannabis with the novel endogenous mechanism of ECS involving the neurosteroid pregnenolone.

In addition, this new endogenous regulatory loop could provide a relevant therapeutic model in the current context of increasing recreational and medical use of cannabis.”

https://pubmed.ncbi.nlm.nih.gov/36043319/

https://onlinelibrary.wiley.com/doi/10.1111/jne.13191

“Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice”

https://pubmed.ncbi.nlm.nih.gov/28220044/

“Pregnenolone Can Protect the Brain from Cannabis Intoxication”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/

An Ultra-Low Dose of ∆9-Tetrahydrocannabinol Alleviates Alzheimer’s Disease-Related Cognitive Impairments and Modulates TrkB Receptor Expression in a 5XFAD Mouse Model

ijms-logo

“Alzheimer’s disease (AD) is the most common form of dementia, but there is still no available treatment.

Δ9-tetrahydrocannabinol (THC) is emerging as a promising therapeutic agent. Using THC in conventional high doses may have deleterious effects. Therefore, we propose to use an ultra-low dose of THC (ULD-THC). We previously published that a single injection of ULD-THC ameliorated cognitive functioning in several models of brain injuries as well as in naturally aging mice.

Here, 5xFAD AD model mice received a single treatment of ULD-THC (0.002 mg/kg) after disease onset and were examined in two separate experiments for cognitive functions, neurotropic, and inflammatory factors in the hippocampus.

We show that a single injection of ULD-THC alleviated cognitive impairments in 6- and 12-month-old 5xFAD mice. On the biochemical level, our results indicate an imbalance between the truncated TrkB receptor isoform and the full receptor, with AD mice showing a greater tendency to express the truncated receptor, and ULD-THC improved this imbalance. We also investigated the expression of three AD-related inflammatory markers and found an ameliorating effect of ULD-THC.

The current research demonstrates for the first time the beneficial effects of a single ultra-low dose of THC in a mouse model of AD after disease onset.”

https://pubmed.ncbi.nlm.nih.gov/36012711/

“The current research demonstrates for the first time the beneficial effects of a single ultra-low dose of THC in a mouse model of AD after disease onset. As THC is a cheap, widely available substance already approved for use in other conditions, this research brings us closer to understanding its mechanisms and will possibly lead to new treatments.”

https://www.mdpi.com/1422-0067/23/16/9449/htm