“Cannabis sativa is widely used as a folk medicine in many parts of the globe and has been reported to be a treasure trove of phytoconstituents, including cannabinoids, terpenoids, and flavonoids.
Accumulating evidence from various pre-clinical and clinical studies revealed the therapeutic potential of these constituents in various pathological conditions, including chronic pain, inflammation, neurological disorders, and cancer.
However, the psychoactive effect and addiction potential associated with cannabis use limited its clinical application. In the past two decades, extensive research on cannabis has led to the resurgence of interest in the clinical application of its constituents, particularly cannabinoids.
This review summarizes the therapeutic effect and molecular mechanism of various phytoconstituents of cannabis. Furthermore, recently developed nanoformulations of cannabis constituents have also been reviewed. Since cannabis is often associated with illicit use, regulatory aspects are of vital importance and this review therefore also documented the regulatory aspects of cannabis use along with clinical data and commercial products of cannabis.”
“Background and aims: Hepatitis C virus (HCV) infection is associated with the onset of metabolic disorders which constitute risk factors for liver disease progression. Their impact may persist after the HCV infection has been cured. Cannabis use is associated with a lower risk of obesity and diabetes in both general and HCV populations. The associations between cannabis use and both dyslipidemia and hypertension have not yet been studied in persons with chronic HCV infection.
Methods: Using cross-sectional data from the French ANRS CO22 Hepather cohort, we used regression models to test for an inverse relationship between cannabis use and (i) dyslipidemia, (ii) hypertension, and (iii) the total number of metabolic disorders.
Results: Among the 6364 participants in the study population, both former and current cannabis use were associated with a lower risk of hypertension and fewer metabolic disorders. These results were independent of central obesity. Cannabis use was not associated with dyslipidemia.
Conclusions: In people chronically infected with HCV, cannabis use was associated with a lower risk of hypertension and a lower number of metabolic disorders. Post-HCV cure studies are needed to confirm these findings using longitudinal data and to test whether they translate into reduced mortality in this population.”
“In a large cohort of people with chronic HCV infection living in France, current or former cannabis use was associated with a lower risk of hypertension and a lower number of metabolic disorders.”
“Cannabidiol (CBD), an important terpenoid compound from marijuana with no psychoactive effects, has become of great pharmaceutical interest for several health conditions. As CBD is a multitarget drug, there is a need to establish the molecular mechanisms by which CBD may exert therapeutic as well as adverse effects. The α7 nicotinic acetylcholine receptor (α7 nAChR) is a cation-permeable ACh-gated channel present in the nervous system and in non-neuronal cells. It is involved in different pathological conditions, including neurological and neurodegenerative disorders, inflammation, and cancer. By high-resolution single-channel recordings and confocal microscopy, we here reveal how CBD modulates α7 nAChR ionotropic and metabotropic functions. CBD leads to a profound concentration-dependent decrease of α7 nAChR single-channel activity with an IC50 in the sub-micromolar range. The inhibition of α7 nAChR activity, which takes place through a membrane pathway, is neither mediated by receptor phosphorylation nor overcome by positive allosteric modulators and is compatible with CBD stabilization of resting or desensitized α7 nAChR conformational states. CBD modulation is complex as it also leads to the later appearance of atypical, low-frequency α7 nAChR channel openings. At the cellular level, CBD inhibits the increase in intracellular calcium triggered by α7 nAChR activation, thus decreasing cell calcium responses. The modulation of α7 nAChR is of pharmacological relevance and should be considered in the evaluation of CBD potential therapeutic uses. Thus, our study provides novel molecular information of CBD multiple actions and targets, which is required to set the basis for prospective applications in human health.”
“Objective: To assess whether the effects of oral administration of 300 mg of Cannabidiol (CBD) for 28 days on mental health are maintained for a period after the medication discontinuation.
Methods: This is a 3-month follow-up observational and clinical trial study. The data were obtained from two studies performed simultaneously by the same team in the same period and region with Brazilian frontline healthcare workers during the COVID-19 pandemic. Scales to assess emotional symptoms were applied weekly, in the first month, and at weeks eight and 12.
Results: The primary outcome was that, compared to the control group, a significant reduction in General Anxiety Disorder-7 Questionnaire (GAD-7) from baseline values was observed in the CBD group on weeks two, four, and eight (Within-Subjects Contrasts, time-group interactions: F1-125 = 7.67; p = 0.006; ηp2 = 0.06; F1-125 = 6.58; p = 0.01; ηp2 = 0.05; F1-125 = 4.28; p = 0.04; ηp2 = 0.03, respectively) after the end of the treatment.
Conclusions: The anxiolytic effects of CBD in frontline health care professionals during the COVID-19 pandemic were maintained up to 1 month after the treatment discontinuation, suggesting a persistent decrease in anxiety in this group in the real world. Future double-blind placebo-controlled clinical trials are needed to confirm the present findings and weigh the benefits of CBD therapy against potential undesired or adverse effects.”
“This observational and clinical trial study combination follow-up showed that the beneficial effects on anxiety, emotional exhaustion/burnout, and depressive symptoms observed among frontline health care professionals working with patients with COVID-19 after 28 days of daily CBD administration were maintained for up to a month after the treatment discontinuation. This study meets the recently highlighted need for extensive real-world studies on CBD’s potential medicinal use. Future double-blind placebo-controlled clinical trials are needed to assess the CBD long-term effects and confirm the present findings.”
“Medicinal cannabis has shown promise for the symptomatic treatment of Parkinson’s disease (PD), but patient exposure to whole plant mixtures may be undesirable due to concerns around safety, consistency, regulatory issues, and psychoactivity. Identification of a subset of components responsible for the potential therapeutic effects within cannabis represents a direct path forward for the generation of anti-PD drugs. Using an in silico database, literature reviews, and cell based assays, GB Sciences previously identified and patented a subset of five cannabinoids and five terpenes that could potentially recapitulate the anti-PD attributes of cannabis. While this work represents a critical step towards harnessing the anti-PD capabilities of cannabis, polypharmaceutical drugs of this complexity may not be feasible as therapeutics. In this paper, we utilize a reductionist approach to identify minimal essential mixtures (MEMs) of these components that are amenable to pharmacological formulation. In the first phase, cell-based models revealed that the cannabinoids had the most significant positive effects on neuroprotection and dopamine secretion. We then evaluated the ability of combinations of these cannabinoids to ameliorate a 6-hydroxydopmamine (OHDA)-induced change in locomotion in larval zebrafish, which has become a well-established PD disease model. Equimolar mixtures that each contained three cannabinoids were able to significantly reverse the OHDA mediated changes in locomotion and other advanced metrics of behavior. Additional screening of sixty-three variations of the original cannabinoid mixtures identified five highly efficacious mixtures that outperformed the original equimolar cannabinoid MEMs and represent the most attractive candidates for therapeutic development. This work highlights the strength of the reductionist approach for the development of ratio-controlled, cannabis mixture-based therapeutics for the treatment of Parkinson’s disease.”
“Cannabis has therapeutic promise in PD. However, there is a need to move beyond whole plant extracts and generate safe, reproducible medicines for patients. This paper identified promising minimal essential mixtures of cannabinoids based on a step-wise, strategic approach to reducing the complexity of the plant secondary metabolome. The sequential use of in silico, in vitro, and medium throughput in vivo experimental systems has generated refined, de-risked, mixtures that can now be tested in additional, higher-cost, preclinical model systems of PD.”
“Objectives: The objectives were to investigate the efficacy and mechanisms of cannabidiol on orofacial nociception induced by Complete Freund’s Adjuvant (CFA) in male Mus musculus mice.
Design: For the study of efficacy, mice were divided into seven groups: sham; inflammation; and cannabidiol 0.5, 1, 3, 5, and 10 mg. For the study of mechanisms of cannabidiol, mice were divided into six groups: sham, inflammation, calcitonin gene-related peptide (CGRP) antagonist with and without cannabidiol, and vanilloid receptor 1 antagonist with and without cannabidiol. Spontaneous pain-like behaviors, trigeminal nociception, and trigeminal modulating activity were investigated.
Results: CFA injected in the right masseter muscle significantly induced spontaneous pain-like behaviors and the trigeminal nociceptive pathway. This effect was inhibited by injection of 1, 3, 5, and 10 mg of cannabidiol. The 50 % inhibitory concentration of cannabidiol on antinociception was found to be 3 mg/kg. In addition, there was no difference in spontaneous pain-like behaviors with vanilloid receptor 1 antagonist injected before treatment with cannabidiol compared to saline control. Reduced c-fos expression was observed in the trigeminal nucleus caudalis and periaqueductal gray in the group injected with CGRP antagonist before treatment with cannabidiol.
Conclusion: The antinociceptive effects of cannabidiol induced by acute orofacial nociception is mediated by vanilloid receptor 1 but not by CGRP. Cannabidiol can act with peripheral nonpeptidergic neurons and can be used as an alternative drug or as a synergistic medication in pain treatment.”
“Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.”
“Introduction: Coronavirus Disease 2019 (COVID-19) causes a wide range of symptoms, including death. As persons recover, some continue to experience symptoms described as Post-Acute COVID-19 Syndrome (PACS). The objectives of this study were to measure the efficacy of Formula C™, a cannabidiol (CBD)-rich, whole-flower terpene-rich preparation in managing PACS symptoms.
Materials and Methods: This randomized, placebo-controlled, single-blind, open-label crossover study was conducted in 2021. Informed consent was obtained from participants, and they were randomized to two treatment groups. Group 1 (n=15) received blinded active product for 28 days, and Group 2 (n=16) received blinded placebo for 28 days (Treatment Period 1). Both groups crossed over to open-label active product for 28 days (Treatment Period 2) with a safety assessment at day 70. Patient-Reported Outcomes Measurement Information System (PROMIS®) scores and the Patient Global Impression of Change (PGIC) score were used to assess primary and secondary objectives. Safety assessments were also done at each visit.
Results: Twenty-four participants completed study, with 8 withdrawals, none related to study product. PGIC and PROMIS scores improved across both groups at day 28. This raised questions about the placebo. A reanalysis of the placebo confirmed absence of CBD and unexpected medical concentration of terpenes. The study continued despite no longer having a true placebo. The improved scores on outcome measures were maintained across the open label treatment period. There were no safety events reported throughout the study.
Discussion: For persons with PACS who are nonresponsive to conventional therapies, this study demonstrated symptom improvement for participants utilizing Formula C. In addition, the benefits seen in Group 2 suggest the possibility that non-CBD formulations rich in antioxidants, omega-3, and omega-6 fatty acids, gamma-linoleic acid, and terpenes may also have contributed to the overall improvement of the partial active group through the study.
Conclusion: Given that both groups demonstrated improvement, both formulations may be contributing to these findings. Limitations include the small number of participants, the lack of a true placebo, and limited time on study products. Additional studies are warranted to explore both CBD-rich hemp products and hempseed oil as treatment options for PACS. Trial Registration ClinicalTrials.gov Identifier:NCT04828668.”
“Formula C is an easy to use, commercially available product which appears to be safe and efficacious in people with PACS. There were no adverse events or safety concerns with utilizing Formula C in this patient population.
In summary, PACS has emerged as a patient population requiring extended periods of chronic care. The failure to identify an effective treatment with the use of traditional western medicinal products suggests the need to explore alternative and integrative approaches to improving the lives of those people affected with ongoing post-COVID conditions.”
“Global interest in the non-intoxicating cannabis constituent, cannabidiol (CBD), is increasing with claims of therapeutic effects across a diversity of health conditions. At present, there is sufficient clinical trial evidence to support the use of high oral doses of CBD (e.g., 10-50 mg/kg) in treating intractable childhood epilepsies. However, a question remains as to whether “low-dose” CBD products confer any therapeutic benefits. This is an important question to answer, as low-dose CBD products are widely available in many countries, often as nutraceutical formulations. The present review therefore evaluated the efficacy and safety of low oral doses of CBD. The review includes interventional studies that measured the clinical efficacy in any health condition and/or safety and tolerability of oral CBD dosed at less than or equal to 400 mg per day in adult populations (i.e., ≥18 years of age). Studies were excluded if the product administered had a Δ9 -tetrahydrocannabinol content greater than 2.0%.
Therapeutic benefits of CBD became more clearly evident at doses greater than or equal to 300 mg. Increased dosing from 60 to 400 mg/day did not appear to be associated with an increased frequency of adverse effects. At doses of 300-400 mg, there is evidence of efficacy with respect to reduced anxiety, as well as anti-addiction effects in drug-dependent individuals. More marginal and less consistent therapeutic effects on insomnia, neurological disorders, and chronic pain were also apparent. Larger more robust clinical trials are needed to confirm the therapeutic potential of lower (i.e., <300 mg/day) oral doses of CBD.”
“The e-cigarette or vaping product-use-associated lung injury (EVALI) epidemic was primarily associated with the use of e-cigarettes containing tetrahydrocannabinol (THC)- the principal psychoactive substance in cannabis, and vitamin-E-acetate- an additive sometimes used in informally sourced THC-containing e-liquids. EVALI case burden varied across states, but it is unclear whether this was associated with state-level cannabis vaping prevalence. We, therefore, used linear regression models to assess the cross-sectional association between state-level cannabis vaping prevalence (obtained from the 2019 behavioral Risk Factor Surveillance System) and EVALI case burden (obtained from the Centers for Disease Control and Prevention) adjusted for state cannabis policies. Cannabis vaping prevalence ranged from 1.14%(95%CI, 0.61%-2.12%) in Wyoming to 3.11%(95%CI, 2.16%-4.44%) in New Hampshire. EVALI cases per million population ranged from 1.90(0.38-3.42) in Oklahoma to 59.10(19.70-96.53) in North Dakota.
There was no significant positive association but an inverse association between state cannabis vaping prevalence and EVALI case burden (Coefficient, -18.6; 95%CI, -37.5-0.4; p-value, 0.05).
Thus, state-level cannabis vaping prevalence was not positively associated with EVALI prevalence, suggesting that there may not be a simple direct link between state cannabis vaping prevalence and EVALI cases, but rather the relationship is likely more nuanced and possibly reflective of access to informal sources of THC-containing e-cigarettes.”