Anticancer properties of cannabidiol and Δ9-tetrahydrocannabinol and synergistic effects with gemcitabine and cisplatin in bladder cancer cell lines

ISRCTN - Publish with BMC

“Introduction: With the legalization of cannabis in multiple jurisdictions throughout the world, a larger proportion of the population consumes cannabis. Several studies have demonstrated anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of cannabinoids in bladder cancer and how cannabinoids could potentially synergize with chemotherapeutic agents. Our study aims to identify whether a combination of cannabinoids, like cannabidiol and Δ9-tetrahydrocannabinol, with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, can produce desirable synergistic effects. We also evaluated if co-treatment with different cannabinoids resulted in synergistic effects.

Methods: We generated concentration curves with several drugs, including several cannabinoids, to identify the range at which they could exert anti-tumor effects in bladder cancer cell lines. We tested the cytotoxic effects of gemcitabine (up to 100 nM), cisplatin (up to 100 μM), and cannabinoids (up to 10 μM) in T24 and TCCSUP cells. We also evaluated the activation of the apoptotic cascade and whether cannabinoids have the ability to reduce invasion in T24 cells.

Results: Cannabidiol, Δ9-tetrahydrocannabinol, cannabichromene, and cannabivarin reduce cell viability of bladder cancer cell lines, and their combination with gemcitabine or cisplatin may induce differential responses, from antagonistic to additive and synergistic effects, depending on the concentrations used. Cannabidiol and Δ9-tetrahydrocannabinol were also shown to induce apoptosis via caspase-3 cleavage and reduce invasion in a Matrigel assay. Cannabidiol and Δ9-tetrahydrocannabinol also display synergistic properties with other cannabinoids like cannabichromene or cannabivarin, although individual cannabinoids may be sufficient to reduce cell viability of bladder cancer cell lines.

Discussion: Our results indicate that cannabinoids can reduce human bladder transitional cell carcinoma cell viability, and that they can potentially exert synergistic effects when combined with other agents. Our in vitro results will form the basis for future studies in vivo and in clinical trials for the development of new therapies that could be beneficial for the treatment of bladder cancer in the future.”

https://pubmed.ncbi.nlm.nih.gov/36870996/

“Our results show the ability of different cannabinoids to produce synergistic effects when combined with other agents like gemcitabine and cisplatin that are significantly different from each drug used alone.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00174-z

The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses

Biomedicine & Pharmacotherapy

“Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients.

The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects.

This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.”

https://pubmed.ncbi.nlm.nih.gov/36871538/

“In recent years, researchers have gradually found that marijuana, in addition to recreational use, has potential applications as a supportive therapy or palliative medicine.

In conclusion, our findings indicate that the infiltration of CD8+ T cells in skeletal muscle plays a vital role in CRC-associated muscle atrophy. Treatment with Δ9-THC or CB65 can ameliorate CRC-associated cachexia and muscle atrophy by activating CB2 in CD8+ T cells. Targeting the CB2 receptor in CD8+ T cells should be evaluated as a therapeutic option for CRC patients who develop cachexia, and the six-cytokine signature in serum might serve as a potential biomarker for the therapeutic effects of cannabinoids in CRC-associated cachexia.”

https://www.sciencedirect.com/science/article/pii/S075333222300255X?via%3Dihub

Cannabidiol and Cannabis Sativa as a potential treatment in vitro prostate cancer cells silenced with RBBp6 and PC3 xenograft

SpringerLink

“Background: Prostate cancer is the second most frequently occurring carcinoma in males worldwide and one of the leading causes of death in men around the world. Recent studies estimate that over 1.4 million males are diagnosed with prostate cancer on an annual basis, with approximately 375,000 succumbing to the disease annually. With current treatments continuing to show severe side effects, there is a need for new treatments. In this study we looked at the effect of cannabis sativa extract, cannabidiol and cisplatin on prostate cancer cells, PC3.

Methods: In addressing the above questions, we employed the MTT assay to measure the antiproliferative effect on PC3 cells following treatment with varying concentrations of Cannabis sativa extract, cisplatin and cannabidiol. xCELLigence was also used to confirm the IC50 activity in which cells were grown in a 16 well plate coated with gold and monitor cell attachment. Caspase 3/7 activity was also measured using 96 well-plate following treatment. Western-blot and qRT-PCR was also used to measure the gene expression of tumour suppressor genes, p53, Bax and Bcl2. Animal studies were employed to measure the growth of PC3-mouse derived cancer to evaluate the effect of compounds in vivo.

Results: From the treatment with varying concentrations of Cannabis sativa extract, cannabidiol and cisplatin, we have observed that the three compounds induced antiproliferation of PC3 cancer cell lines through the activation of caspase 3/7 activity. We also observed induction of apoptosis in these cells following silencing of retinoblastoma binding protein 6 (RBBP6), with upregulation of p53 and bax mRNA expression, and a reduction in Bcl2 gene expression. The growth of tumours in the mouse models were reduced following treatment with cisplatin and cannabidiol.

Conclusion: We demonstrated that cannabidiol is a viable therapy to treat prostate cancer cells, in combination with silencing of RBBP6. This suggests that cannabidiol rather Cannabis sativa extract may play an important role in reducing cancer progression.”

https://pubmed.ncbi.nlm.nih.gov/36853473/

“In conclusion, these results further suggest that CBD is an effective anti-tumor drug which possesses anti-proliferative and pro-apoptotic properties. Additionally, these findings point to a crosstalk between RBBP6 silencing and CBD treatment rather than Cannabis sativa extract. Moreover, CBD-siRBBP6 has shown an important role of p53 up-regulation in prostate cancer, a tumor microenvironment modulating property. In conclusion, the findings of this study promote using CBD in cancer patients mostly with an inactivated p53 gene.”

https://link.springer.com/article/10.1007/s11033-022-08197-0

Gene Profiling of Cannabis-sativa-mediated Apoptosis in Human Melanoma Cells

Anticancer Research: 43 (3)

“Background/aim: Malignant melanoma is an aggressive skin cancer, accounting for the majority of skin cancer deaths. Prognosis is often poor and finding effective treatment remains a challenge. Tetrahydrocannabinol (THC) and cannabidiol (CBD) are main bioactive components of Cannabis sativa plant extracts that have been shown to exert anti-tumor effects. In this study, we aimed to perform gene expression analysis of human melanoma A375 cells following stimulation with C. sativa extracts.

Materials and methods: Gene expression profiles of A375 human melanoma and Vero (control) cell lines were evaluated by RNA sequencing and quantitative real-time PCR.

Results: Flow cytometry showed that the THC+CBD cannabis fractions induced apoptosis on A375 cells. Induction of apoptosis was accompanied by a notable up-regulation of DNA damage inducible transcript 3 (DDIT), nerve growth factor receptor (NGFR), colony-stimulating factor 2 (CSF2), growth arrest and DNA damage inducible beta (GADD45B), and thymic stromal lymphopoietin (TSLP) genes and down-regulation of aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), cyclin E2 (CCNE2), integrin subunit alpha 9 (ITGA9), proliferating cell nuclear antigen (PCNA) and E2F transcription factor 1 (E2F1) genes. Treatment of A375 cells with the THC+CBD fraction inhibited the phosphorylation of ERK1/2 signaling pathway, which regulates melanoma cell proliferation. We showed that the THC+CBD combination disrupted melanoma cell migration.

Conclusion: Use of C. sativa-derived extracts containing equal amounts of THC and CBD is proposed as a potential treatment of melanoma.”

https://pubmed.ncbi.nlm.nih.gov/36854502/

https://ar.iiarjournals.org/content/43/3/1221

The synergistic anticancer effect of CBD and DOX in osteosarcoma

SpringerLink

“Background: Osteosarcoma is a malignant tumor that can present with pain in the bones, joints, and local masses. The incidence is highest in adolescents, and the most common sites are the distal femur, proximal tibia and proximal humerus metaphyseal. Doxorubicin is the first-line chemotherapeutic agent for the treatment of osteosarcoma, but it has many side effects. Cannabidiol is a non-psychoactive plant cannabinoid cannabinol (CBD) that has been shown to be effective against osteosarcoma; however, the molecular targets and mechanisms of CBD action in osteosarcoma remain unclear.

Methods: Cell proliferation, migration, invasion and colony formation were analyzed using two drugs alone or in combination to evaluate their inhibitory effects on the malignant characteristics of OS cells. Apoptosis and the cell cycle were detected by flow cytometry. The synergistic inhibitory effect of doxorubicin/cannabidiol on tumors was also detected in nude mouse xenotransplantation models.

Results: Through analysis of two osteosarcoma cell lines, MG63 and U2R, it was found that the cannabidiol/doxorubicin combination treatment synergistically inhibited growth, migration and invasion and induced apoptosis, blocking G2 stagnation in OS cells. Further mechanistic exploration suggests that the PI3K-AKT-mTOR pathway and MAPK pathway play an important role in the synergistic inhibitory effect of the two drugs in osteosarcoma. Finally, in vivo experimental results showed that the cannabidiol/doxorubicin combination treatment significantly reduced the number of tumor xenografts compared to cannabidiol alone or doxorubicin alone.

Conclusions: Our findings in this study suggest that cannabidiol and doxorubicin have a synergistic anticancer effect on OS cells, and their combined application may be a promising treatment strategy for OS.”

https://pubmed.ncbi.nlm.nih.gov/36848028/

https://link.springer.com/article/10.1007/s12094-023-03119-3

Phytocannabinoids in Triple Negative Breast Cancer Treatment: Current Knowledge and Future Insights

Anticancer Research: 43 (3)

“Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, which is deficient in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Thus, TNBC cells are unable to respond to the conventional hormonal therapies, making chemotherapy the only therapeutic choice. Patients with TNBC develop metastasis and recurrence over time and have reduced survival compared to patients with other subtypes of breast cancer. Therefore, there is a need for innovative therapies. Data emerged from pre-clinical studies, highlighted various antitumor activities of plant-derived Cannabis sativa and synthetic cannabinoids (CBs), including delta-9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD). On the contrary, some studies indicated that CBs might also promote tumor progression. At present, clinical studies on the effects of CBs from Cannabis sativa in cancer patients are few. In the present study, we reviewed known and possible interactions between cannabinoids and TNBC therapies.”

https://pubmed.ncbi.nlm.nih.gov/36854495/

“Overall, apart from the need for other studies aimed to dissect the molecular pathways underlying the antitumor CBs’ properties, phytocannabinoids should be considered as potential agents for inhibiting TNBC progression.”

https://ar.iiarjournals.org/content/43/3/993