Investigation of neuroprotective and therapeutic effects of cannabidiol in an acute coronary syndrome model

pubmed logo

“Purpose: The ischemia-reperfusion (I/R) injury seen in the heart can cause severe damage to essential organs such as the brain. Cannabidiol (CBD) obtained from Cannabis sativa is used today to treat various diseases. This study aimed to demonstrate CBD’s neuroprotective and therapeutic properties in rats with brain damage caused by I/R in the heart.

Materials: Rats were divided into four groups; sham, I/R, I/R + Prophylactic CBD, and I/R + Therapeutic CBD. End of the experiment, brain tissues were collected for biochemical, histopathological, and genetic examinations.

Results: I/R damage increased the number of degenerative neurons, caspase-3 and TNF-α immunoexpression, total oxidant status levels, and oxidative stress index. Both prophylactic and therapeutic CBD administration reduced these increased values. In addition, the relative fold changes of AMPK, PGC-1α, SIRT1, and Bcl 2 decreased in the I/R group, and the relative fold change of Bax increased, which are indicators of ER stress and apoptosis. Both administrations of CBD reversed these genes’ relative fold changes.

Conclusion: CBD can be protective against brain injury caused by cardiac I/R damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.”

https://pubmed.ncbi.nlm.nih.gov/38401641/

“Cannabidiol protects brain from damage by activating the AMPK/SIRT1/PGC-1α pathway.”

https://www.sciencedirect.com/science/article/abs/pii/S0304394024000661?via%3Dihub

Cannabidiol protects against acute aortic dissection by inhibiting macrophage infiltration and PMAIP1-induced vascular smooth muscle cell apoptosis

pubmed logo

“Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD.

In a β-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis.

Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.”

https://pubmed.ncbi.nlm.nih.gov/38387723/

https://www.jmcc-online.com/article/S0022-2828(24)00023-3/fulltext

Cannabigerol Induces Autophagic Cell Death by Inhibiting EGFR-RAS Pathways in Human Pancreatic Ductal Adenocarcinoma Cell Lines

pubmed logo

“Pancreatic ductal adenocarcinoma (PDAC) is the most frequent infiltrating type of pancreatic cancer. The poor prognosis associated with this cancer is due to the absence of specific biomarkers, aggressiveness, and treatment resistance. PDAC is a deadly malignancy bearing distinct genetic alterations, the most common being those that result in cancer-causing versions of the KRAS gene.

Cannabigerol (CBG) is a non-psychomimetic cannabinoid with anti-inflammatory properties.

Regarding the anticancer effect of CBG, up to now, there is only limited evidence in human cancers. To fill this gap, we investigated the effects of CBG on the PDAC cell lines, PANC-1 and MIAPaCa-2. The effect of CBG activity on cell viability, cell death, and EGFR-RAS-associated signaling was investigated. Moreover, the potential synergistic effect of CBG in combination with gemcitabine (GEM) and paclitaxel (PTX) was investigated. MTT was applied to investigate the effect of CBG on PDAC cell line viabilities. Annexin-V and Acridine orange staining, followed by cytofluorimetric analysis and Western blotting, were used to evaluate CBG’s effect on cell death. The modulation of EGFR-RAS-associated pathways was determined by Western blot analysis and a Milliplex multiplex assay. Moreover, by employing the MTT data and SynergyFinder Plus software analysis, the effect of the combination of CBG and chemotherapeutic drugs was determined.”

https://pubmed.ncbi.nlm.nih.gov/38396679/

“In conclusion, our results showed that CBG, a non-psychomimetic cannabinoid from Cannabis Sativa L., can induce an anticancer effect in two human PDAC cell lines, supporting the ability of cannabinoids to interfere with several pro-tumoral pathways.”

https://www.mdpi.com/1422-0067/25/4/2001

Cannabidiol activates MAPK pathway to induce apoptosis, paraptosis, and autophagy in colorectal cancer cells

pubmed logo

“Mitogen-activated protein kinase (MAPK) activation by natural compounds is known to be involved in the induction of apoptosis, paraptosis, and autophagy.

Cannabidiol (CBD), a bioactive compound found in Cannabis sativa, is endowed with many pharmacological activities. We investigated the cytotoxic effect of CBD in a panel of colorectal cancer (CRC) cells (HT-29, SW480, HCT-116, and HCT-15).

CBD induced significant cytotoxicity as evidenced by the results of MTT assay, live-dead assay, and flow cytometric analysis. Since CBD displayed cytotoxicity against CRC cells, we examined the effect of CBD on apoptosis, paraptosis, and autophagy. CBD decreased the expression of antiapoptotic proteins and increased the Annexin-V-positive as well as TUNEL-positive cells suggesting that CBD induces apoptosis. CBD increased the expression of ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer-binding protein homologous protein), elevated endoplasmic reticulum stress, and enhanced reactive oxygen species levels indicating that CBD also promotes paraptosis. CBD also induced the expression of Atg7, phospho-Beclin-1, and LC3 suggesting that CBD also accelerates autophagy.

Since, the MAPK pathway is a common cascade that is involved in the regulation of apoptosis, paraptosis, and autophagy, we investigated the effect of CBD on the activation of JNK, p38, and ERK pathways. CBD activated all the forms of MAPK proteins and pharmacological inhibition of these proteins reverted the observed effects.

Our findings implied that CBD could induce CRC cell death by activating apoptosis, paraptosis, and autophagy through the activation of the MAPK pathway.”

https://pubmed.ncbi.nlm.nih.gov/38358093/

https://onlinelibrary.wiley.com/doi/10.1002/jcb.30537

Anti-inflammatory effects of cannabidiol in early stages of neuroinflammation induced by high-fat diet in cerebral cortex of rats

pubmed logo

“High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex.

In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered.

Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.”

https://pubmed.ncbi.nlm.nih.gov/38336253/

“To summarize all of the above evidence, the CBD action suggests, that it could hold a great potential for possibly alleviating the inflammatory response by interfering with the eicosanoid synthesis process. As a compound with a fairly simple chemical structure and lipophilic qualities, it has a high ability to penetrate the blood-brain barrier, which is an obstacle that many other pharmaceuticals, whose targets are located within the brain, cannot overcome.”

“Even though the Cannabis plant has been present in the history of humankind for hundreds of years, we ought not to stop looking for new potential applications of its constituents, especially in the clinical medicine of the future, which in the first place should be safe and effective.”

https://www.sciencedirect.com/science/article/pii/S0041008X24000541?via%3Dihub

Cannabidiol improves memory and decreases IL-1β serum levels in rats with lipopolysaccharide-induced inflammation

pubmed logo

“Memory improving and anti-inflammatory properties of cannabidiol (CBD) were investigated in an experimental model of lipopolysaccharide (LPS)-induced inflammation.”

https://pubmed.ncbi.nlm.nih.gov/38351784/

“Cannabis sativa is a plant that has been cultivated by humans and utilized in medicine since ancient times.”

“Cannabidiol (CBD) is one of the most important Cannabis-derived molecules,”

“CBD improved spatial working and recognition memory in rats with LPS-induced inflammation. Suppression of IL-1β production could be attributed to the observed effect.”

https://foliamedica.bg/article/107259/

Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy

pubmed logo

“The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response.

Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models.

To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways.

This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.”

https://www.mdpi.com/1422-0067/25/3/1371

“Cannabinoids may offer a more effective and tolerable treatment option for GBM patients.”

https://pubmed.ncbi.nlm.nih.gov/38338649/

Evaluating the Mechanism of Cell Death in Melanoma Induced by the Cannabis Extract PHEC-66

pubmed logo

“Research suggests the potential of using cannabinoid-derived compounds to function as anticancer agents against melanoma cells.

Our recent study highlighted the remarkable in vitro anticancer effects of PHEC-66, an extract from Cannabis sativa, on the MM418-C1, MM329, and MM96L melanoma cell lines. However, the complete molecular mechanism behind this action remains to be elucidated.

This study aims to unravel how PHEC-66 brings about its antiproliferative impact on these cell lines, utilising diverse techniques such as real-time polymerase chain reaction (qPCR), assays to assess the inhibition of CB1 and CB2 receptors, measurement of reactive oxygen species (ROS), apoptosis assays, and fluorescence-activated cell sorting (FACS) for apoptosis and cell cycle analysis.

The outcomes obtained from this study suggest that PHEC-66 triggers apoptosis in these melanoma cell lines by increasing the expression of pro-apoptotic markers (BAX mRNA) while concurrently reducing the expression of anti-apoptotic markers (Bcl-2 mRNA). Additionally, PHEC-66 induces DNA fragmentation, halting cell progression at the G1 cell cycle checkpoint and substantially elevating intracellular ROS levels.

These findings imply that PHEC-66 might have potential as an adjuvant therapy in the treatment of malignant melanoma. However, it is essential to conduct further preclinical investigations to delve deeper into its potential and efficacy.”

https://pubmed.ncbi.nlm.nih.gov/38334660/

https://www.mdpi.com/2073-4409/13/3/268

Removing barriers to accessing medical cannabis for paediatric patients

pubmed logo

“Medical cannabis (MC) may offer therapeutic benefits for children with complex neurological conditions and chronic diseases. In Canada, parents, and caregivers frequently report encountering barriers when accessing MC for their children. These include negative preconceived notions about risks and benefits, challenges connecting with a knowledgeable healthcare provider (HCP), the high cost of MC products, and navigating MC product shortages. In this manuscript, we explore several of these barriers and provide recommendations to decision-makers to enable a family-centered and evidence-based approach to MC medicine and research for children.”

https://pubmed.ncbi.nlm.nih.gov/38332979/

https://academic.oup.com/pch/article/29/1/12/7098192?login=false

Tetrahydrocannabinol and Cannabidiol in Tourette Syndrome

pubmed logo

“This randomized controlled crossover trial examined the use of oral tetrahydrocannabinol (THC) with cannabidiol (CBD) to reduce tics in patients with severe Tourette syndrome. Treatment with THC and CBD for 6 weeks led to a significant reduction in tics as measured by the total tic score on the Yale Global Tic Severity Scale, without major adverse effects.”

https://pubmed.ncbi.nlm.nih.gov/38320199/

“BACKGROUND

Tourette syndrome is characterized by chronic motor and vocal tics. There is preliminary evidence of benefit from cannabis products containing Δ9-tetrahydrocannabinol (THC) and that coadministration of cannabidiol (CBD) improves the side-effect profile and safety.

METHODS

In this double-blind, crossover trial, participants with severe Tourette syndrome were randomly assigned to a 6-week treatment period with escalating doses of an oral oil containing 5 mg/ml of THC and 5 mg/ml of CBD, followed by a 6-week course of placebo, or vice versa, separated by a 4-week washout period. The primary outcome was the total tic score on the Yale Global Tic Severity Scale (YGTSS; range, 0 to 50 [higher scores indicate greater severity of symptoms]). Secondary outcomes included video-based assessment of tics, global impairment, anxiety, depression, and obsessive-compulsive symptoms. Outcomes were correlated with plasma levels of cannabinoid metabolites. A computerized cognitive battery was administered at the beginning and the end of each treatment period.

RESULTS

Overall, 22 participants (eight female participants) were enrolled. Reduction in total tic score (at week 6 relative to baseline) as measured by the YGTSS was 8.9 (±7.6) in the active group and 2.5 (±8.5) in the placebo group. In a linear mixed-effects model, there was a significant interaction of treatment (active/placebo) and visit number on tic score (coefficient = −2.28; 95% confidence interval, −3.96 to −0.60; P=0.008), indicating a greater decrease (improvement) in tics under active treatment. There was a correlation between plasma 11-carboxy-tetrahydrocannabinol levels and the primary outcome, which was attenuated after exclusion of an outlier. The most common adverse effect in the placebo period was headache (n=7); in the active treatment period, it was cognitive difficulties, including slowed mentation, memory lapses, and poor concentration (n=8).

CONCLUSIONS

In severe Tourette syndrome, treatment with THC and CBD reduced tics and may reduce impairment due to tics, anxiety, and obsessive-compulsive disorder; although in some participants this was associated with slowed mentation, memory lapses, and poor concentration.”

https://evidence.nejm.org/doi/10.1056/EVIDoa2300012