“Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds.
The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system.
Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins.
The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.”
https://pubmed.ncbi.nlm.nih.gov/38928387/
“In summary, our narrative review highlights the complex interaction between cannabinoids and gastrointestinal physiology, shedding light on their potential therapeutic applications in the treatment of GIT diseases.
The findings highlight the diverse effects of cannabinoids on motility, intestinal permeability, and inflammation, which are mediated by interactions with endocannabinoids and cannabinoid receptors. It is noteworthy that cannabinoids such as THC and CBD exhibit receptor-specific effects on GIT motility via CB1 receptors, causing inhibition of muscle contractility, which may suggest targets for therapeutic interventions. Moreover, the involvement of CB1 and CB2 receptors in regulating intestinal permeability underscores the complexity of mechanisms mediated by cannabinoids in gastrointestinal health.
In addition, cannabinoids show promise as anti-inflammatory agents, offering potential benefits in the treatment of Crohn’s disease, ulcerative colitis, and IBD. Moreover, their role in modulating intestinal motility and relieving pain implicates cannabinoids as potential agents for improving quality of life in gastrointestinal disorders, especially chronic such as IBS. The results of clinical trials and data on the adverse effects of phytocannabinoids indicate that further research is needed to elucidate the exact mechanisms and optimize therapeutic strategies to realize the full potential of cannabinoids in clinical practice.”