Cannabielsoin (CBE), a CBD Oxidation Product, Is a Biased CB1 Agonist

pubmed logo

“Cannabielsoin (CBE) is primarily recognized as an oxidation byproduct of cannabidiol (CBD) and a minor mammalian metabolite of CBD. The pharmacological interactions between CBE and cannabinoid receptors remain largely unexplored, particularly with respect to cannabinoid receptor type 1 (CB1).

The present study aimed to elucidate the interaction dynamics of CBE in relation to CB1 by employing cyclic adenosine monophosphate (cAMP) and β-arrestin assays to assess its role as an agonist, antagonist, and positive allosteric modulator (PAM). To our knowledge, this is the first publication to investigate CBE’s receptor activity in vitro.

Our findings reveal that S-CBE acts as an agonist to CB1 with EC50 = 1.23 µg/mL (3.7 µM) in the cAMP assay. No agonist activity was observed in the β-arrestin assay in concentrations up to 12 µM, suggesting a noteworthy affinity towards G-protein activation and the cAMP signaling pathway. Furthermore, in silico molecular docking simulations were conducted to provide a structural basis for the interaction between CBE and CB1, offering insights into the molecular determinants of its receptor affinity and functional selectivity.”

https://pubmed.ncbi.nlm.nih.gov/39062125/

https://www.mdpi.com/2227-9059/12/7/1551

Is a Low Dosage of Medical Cannabis Effective for Treating Pain Related to Fibromyalgia? A Pilot Study and Systematic Review

pubmed logo

“Background and Objectives: Fibromyalgia is a multifaceted and frequently misunderstood chronic pain disease marked by widespread musculoskeletal pain and cognitive/somatic dysfunction. This trial aims to contribute to the existing knowledge on treating fibromyalgia (FM) with medical cannabis (Cannabis sativa L.) and explore a safer and more effective cannabis administration method. The goal is to provide evidence-based findings that can guide alternative treatment options for FM patients by assessing a pilot study. 

Materials and Methods: The trial was performed at the pain therapy unit of the San Carlo Hospital (Potenza, Italy) by administrating to 30 FM patients 100 mg/day of Bedrocan® (Bedrocan International, Veendam, The Netherlands) as a decoction. The Numerical Rating Scale (NRS) and SF-12 short-form health questionnaire were used to evaluate pain intensity and the quality of life at the beginning of the study and the 6th-month follow-up. A systematic review of all clinical studies investigating the use of cannabis to reduce FM was also undertaken to place this study in the context of the existing evidence base. 

Results: Pain intensity evaluated with the NRS lowered from a median of 8 [95% CI 7.66-8.54] at a baseline to a median of 4 (95% CI 3.28-4.79) after 6 months of follow-up (p-value < 0.001; t-test). Similarly, significant physical and mental state improvement, evaluated with the SF-12 questionnaire, was found in 96.67% and 82.33% of patients, respectively (95% CI 44.11-51.13 for the physical state, and 53.48-58.69 for mental state assessed after the 6th-month follow-up; p-value < 0.001; t-test). The systematic analysis of the literature identified 10 clinical trials concerning the treatment of fibromyalgia with cannabis. 

Conclusions: Considering results from the present pilot study and systematic review, it is possible to assume that medical cannabis may be considered an alternative therapy for FM patients who do not respond to conventional pharmacological therapy.”

https://pubmed.ncbi.nlm.nih.gov/39064128/

“FM is one of the most common causes of persistent chronic and widespread pain. However, although pain is its main feature, it is represented by a complex polysymptomatology comprising fatigue, sleep disturbances, generalized hyperalgesia, stiffness, palpation-specific tender points, and cognitive and somatic dysfunction.

The current pilot study evidenced a positive effect of a low dosage of MC (Bedrocan®; 100 mg/day) in treating FM symptomatology. Likewise, data from the literature demonstrated that cannabis administration could be associated with an improved quality of life for patients suffering from chronic pain. Hence, it is possible to conclude that cannabinoids may represent an effective alternative to conventional pharmacological therapy for reducing pain and mind disorders in FM subjects.”

https://www.mdpi.com/2077-0383/13/14/4088

The Role of Different Types of Cannabinoids in Periodontal Disease: An Integrative Review

pubmed logo

“This integrative review addresses the potential of the Endocannabinoid System (ES) and cannabinoids in the pathogenesis and treatment of periodontal disease (PD). Cannabinoid receptors are expressed in healthy and inflamed periodontal tissues, indicating a potential regulatory role for SEC in oral homeostasis.

Healthy periodontal cells express more CB1 receptors, while inflamed sites show increased CB2 receptors. This suggests a dynamic involvement of the SEC in the inflammatory response associated with PD. Cannabinoids such as cannabidiol (CBD) and cannabinoid receptor agonists such as HU-308, anandamide (AEA), and methanamide (Meta-AEA) have demonstrated promising therapeutic potential in studies.

CBD has been associated with the control of bone resorption, antibacterial activity, and increased production of gingival fibroblasts, indicating effects in mitigating the progression of PD. HU-308 demonstrated preventive effects against alveolar bone loss, and anti-inflammatory, osteoprotective, and pro-homeostatic properties in animal models of periodontitis. AEA and Meta-AEA have anti-inflammatory effects by reducing pro-inflammatory mediators such as IL-1, IL-6, and TNF-α.

The activation of cannabinoid receptors attenuates inflammatory processes, inhibits alveolar bone loss, exerts antibacterial effects, and promotes tissue repair. However, clinical trials are especially needed to validate these results and explore the therapeutic potential of cannabinoids in the treatment of PD in humans.”

https://pubmed.ncbi.nlm.nih.gov/39065590/

“Preclinical studies evidence the positive role of the Endocannabinoid System (ECS) and different types of cannabinoids—such as endogenous (anandamide (AEA)), synthetic (methanandamide (Meta-AEA), and HU-308), and natural (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD))—in the pathogenesis and therapeutics of conditions affecting oral tissues and cells. Notable contributions of this system and its ligands include the potential for preventing bone resorption, anti-inflammatory effects, tissue repair capabilities, and antimicrobial effects”

https://www.mdpi.com/1999-4923/16/7/893

The Impact of the CB2 Cannabinoid Receptor in Inflammatory Diseases: An Update

pubmed logo

“The emergence of inflammatory diseases is a heavy burden on modern societies.

Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout.

Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators.

As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.”

https://pubmed.ncbi.nlm.nih.gov/39064959/

https://www.mdpi.com/1420-3049/29/14/3381

In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities

pubmed logo

“For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use.

Described as a ‘treasure trove,’ cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer’s, Parkinson’s, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.”

https://pubmed.ncbi.nlm.nih.gov/39056093/

https://www.sciencedirect.com/science/article/pii/S2214750024000684?via%3Dihub

Effects of Medical Cannabis Treatment for Autistic Children on Anxiety and Restricted and Repetitive Behaviors and Interests: An Open-Label Study

pubmed logo

“Background: The literature supports the benefits of medical cannabis for core and comorbid symptoms in autistic individuals and anxiety-related symptoms in individuals without autism. However, no study has specifically investigated how cannabidiol (CBD)-rich cannabis affects anxiety subtypes in autistic children or its relationship with restricted and repetitive behaviors and interests (RRBI). Understanding the effects of CBD-rich cannabis treatment on anxiety subtypes and RRBI could offer more precise treatment approaches to managing anxiety symptoms and reducing RRBI frequency in autistic children. 

Objectives: To examine (1) the impact of CBD-rich cannabis treatment on autistic children’s (1a) anxiety levels and subtypes and (1 b) RRBI and subtypes and (2) whether changes in anxiety explain changes in RRBI following cannabis treatment. 

Method: In this open-label study, we analyzed data from 65 autistic children (5-12 years) who had participated in research on the effects of CBD-rich cannabis on children with autism. Their parents completed the Repetitive Behavior Scale-revised to assess the frequency and severity of six subgroups of their children’s recurrent behaviors and the Screen for Child Anxiety-Related Emotional Disorders for symptoms related to five types of anxiety disorders. They completed these assessments at three time points: (T1) before treatment, (T2) after 3 months, and (T3) after 6 months of treatment. 

Results: The results indicated reduced RRBI and symptoms related to various anxiety subtypes in autistic children following 6 months of CBD-rich cannabis treatment. Specifically, we observed significant differences in the autistic children’s overall anxiety and in some anxiety subtypes (i.e., general, social, panic, and separation anxieties). Significant improvements were observed in RRBI, including the total score, and specifically in compulsive, ritualistic, and sameness behaviors. Our findings revealed that reduced anxiety, particularly within the panic- and separation-related subtypes, predicted a subsequent decrease in RRBI, specifically sameness behaviors, following cannabis treatment. 

Conclusions: The findings of the cannabis treatment’s potential benefits for alleviating anxiety symptoms, leading to reduced RRBI, may provide evidence for the meaningful relationship between these variables and for the potential benefits of cannabis treatment for autistic children. We strongly recommend further double-blind, placebo-controlled studies using standardized assessments to validate these findings.”

https://pubmed.ncbi.nlm.nih.gov/39047052/

https://www.liebertpub.com/doi/10.1089/can.2024.0001

Effects of cannabinoid receptor activation on Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells in vitro

pubmed logo

“Purpose: Periodontitis is an inflammatory disease that results in the loss of periodontal tissue. The endocannabinoid system has anti-inflammatory properties and displays considerable potential for tissue regeneration. In this study, we aimed to explore whether the activation of this system can alleviate or reverse the inflammatory phenotype of human periodontal ligament stem cells (hPDLSCs) induced by exposure to the inflammagen lipopolysaccharide (LPS).

Methods: We investigated the effects of activating specific cannabinoid receptors (CB1 and CB2) on the inflammatory phenotype of LPS-stimulated hPDLSCs. The exogenous ligands WIN55,212-2 and JWH-133 were employed to target the cannabinoid receptors. We conducted a thorough assessment of cell proliferation, metabolic activity, and adipogenic, osteogenic, and chondrogenic differentiation potential. Additionally, we measured cytokine release using enzyme-linked immunosorbent assays.

Results: Exposure to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) caused an increase in cell proliferation while decreasing metabolic activity. While this exposure did not influence adipogenic or chondrogenic differentiation, it did result in reduced osteogenesis. Additionally, LPS induced the release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein 1. Immunolabeling revealed the presence of CB1 and CB2 on the cellular membrane, with these receptors playing distinct roles in hPDLSCs. The CB1 agonist WIN55,212-2 was found to increase metabolic activity and promote adipogenic differentiation, whereas the CB2 agonist JWH-133 promoted cell proliferation and osteogenic differentiation. When hPDLSCs were co-exposed to Pg-LPS and CB ligands, JWH-133 slightly ameliorated the inhibition of osteogenic differentiation and suppressed the release of inflammatory cytokines.

Conclusions: This study clarifies the effects of specific CB receptor activation on hPDLCs and the inflammatory phenotype. Stimulation of the endocannabinoid system through the manipulation of endogenous or the application of exogenous cannabinoids in vivo may represent a potent therapeutic option for combating periodontal inflammatory disorders.”

https://pubmed.ncbi.nlm.nih.gov/39058353/

https://jpis.org/DOIx.php?id=10.5051/jpis.2303680184


The prophylactic and therapeutic effects of cannabidiol on lung injury secondary to cardiac ischemia model in rats via PERK/NRF2/CHOP/BCL2 pathway

pubmed logo

“Background: Inflammation and oxidative stress are key players in lung injury stemming from cardiac ischemia (LISCI). Cannabidiol (CBD) demonstrates tissue-protective properties through its antioxidant, anti-inflammatory, and anti-apoptotic characteristics. This study aims to assess the preventive (p-CBD) and therapeutic (t-CBD) effects of CBD on LISCI.

Methods: Forty male Wistar Albino rats were divided into four groups: control (CON), LISCI, p-CBD, and t-CBD. The left anterior descending coronary artery was ligated for 30 minutes of ischemia followed by 30 minutes of reperfusion. Lung tissues were then extracted for histopathological, immunohistochemical, genetic, and biochemical analyses.

Results: Histopathologically, marked hyperemia, increased septal tissue thickness, and inflammatory cell infiltrations were observed in the lung tissues of the LISCI group. Spectrophotometrically, total oxidant status and oxidative stress index levels were elevated, while total antioxidant status levels were decreased. Immunohistochemically, expressions of cyclooxygenase-1 (COX1), granulocyte colony-stimulating factor (GCSF), interleukin-6 (IL6) were increased. In genetic analyses, PERK and CHOP expressions were increased, whereas Nuclear factor erythroid 2-related factor 2 (NRF2) and B-cell leukemia/lymphoma 2 protein (BCL2) expressions were decreased. These parameters were alleviated by both prophylactic and therapeutic CBD treatment protocols.

Conclusion: In LISCI-induced damage, both endoplasmic reticulum and mitochondrial stress, along with oxidative and inflammatory markers, were triggered, resulting in lung cell damage. However, both p-CBD and t-CBD treatments effectively reversed these mechanisms, normalizing all histopathological, biochemical, and PCR parameters.”

https://pubmed.ncbi.nlm.nih.gov/39048516/

https://www.tandfonline.com/doi/full/10.1080/08923973.2024.2384904

Multifaceted targets of cannabidiol in epilepsy: Modulating glutamate signaling and beyond

pubmed logo

“Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target.

In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes.

Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.”

https://pubmed.ncbi.nlm.nih.gov/39047503/

https://www.sciencedirect.com/science/article/abs/pii/S0010482524009831?via%3Dihub

Larvicidal Activity of Hemp Extracts and Cannabidiol against the Yellow Fever Mosquito Aedes aegypti

pubmed logo

“To mitigate pyrethroid resistance in mosquito vectors of emerging and re-emerging human pathogens, there is an urgent need to discover insecticides with novel modes of action. Natural alternatives, such as extracts derived from plants, may serve as substitutes for traditional synthetic insecticides if they prove to be sustainable, cost-effective, and safe for non-target organisms.

Hemp (Cannabis sativa) is a sustainable plant known to produce various secondary metabolites with insecticidal properties, including terpenoids and flavonoids. The goal of this study was to assess the larvicidal activity of hemp leaf extract on mosquito larvae from both pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Aedes aegypti. Another goal was to identify which components of the extract were responsible for any observed larvicidal activity.

We found that a methanol extract of hemp leaves induced similar concentration-dependent larvicidal activity against PS (LC50: 4.4 ppm) and PR (LC50: 4.3 ppm) strains within 48 h. Partitioning of the leaf extract between methanol and hexane fractions revealed that full larvicidal activity was restricted to the methanol fraction. Analysis of this fraction by gas chromatography-mass spectrometry and nuclear magnetic resonance showed it to be dominated by cannabidiol (CBD). Larvicidal assays using authentic CBD confirmed this compound was primarily responsible for the toxicity of the hemp leaf extract against both strains.

We conclude that hemp leaf extracts and CBD have the potential to serve as viable sources for the development of novel mosquito larvicides.”

https://pubmed.ncbi.nlm.nih.gov/39057250/

“The present study examined whether extracts of hemp leaves were toxic to Aedes aegypti larvae and determined which compound(s) were responsible for the toxicity. We found that larvae, from both insecticide-resistant and -susceptible strains were killed by hemp leaf extract within 48 h of exposure. Furthermore, we found that an abundant cannabinoid (cannabidiol) within the extract was the primary active compound. This study suggests that hemp extracts and cannabidiol are potentially valuable sources for developing biopesticides to control mosquitoes.”

https://www.mdpi.com/2075-4450/15/7/517