Suicidal Ideation in Medicinal Cannabis Patients: A 12-Month Prospective Study

pubmed logo

“Objective: To document the prevalence and correlates of suicidal ideation (SI) among individuals seeking cannabis-based medicinal products (CBMPs); to test whether SI declines or intensifies after three months of CBMP treatment and to document 12-month trajectories of depression in those reporting SI and other patients.

Method: Observational data were available for 3781 patients at entry to treatment, 2112 at three months and 777 for 12 months. Self-reported depressed mood and SI were assessed using items from the PHQ-9. Additional data included sociodemographic characteristics and self-reported well-being.

Results: 25% of the sample reported SI at treatment entry and those with SI had higher levels of depressed mood (mean = 17.4 vs. 11.3; F(1,3533) = 716.5, p < .001) and disturbed sleep (mean = 13.8 vs. 12.2, F(1,3533) = 125.9, p < .001), poorer general health (mean = 43.6 vs. 52.2, F(1,3533) = 118.3, p < .001) and lower quality of life (mean = 0.44 vs. 0.56 (F(1,3533) = 118.3, p < .001). The prevalence of SI reduced from 23.6% to 17.6% (z = 6.5, p < .001) at 3 months. Twelve-month follow-up indicated a substantial reduction in depressed mood with this reduction being more pronounced in those reporting SI (mean (baseline) = 17.7 vs. mean (12 months) = 10.3) than in other patients (mean (baseline) = 11.1 vs. mean (12 months) = 7.0).

Conclusions: SI is common among individuals seeking CBMPs to treat a range of chronic conditions and is associated with higher levels of depressed mood and poorer quality of life. Treatment with CBMPs reduced the prevalence and intensity of suicidal ideation.”

https://pubmed.ncbi.nlm.nih.gov/39045855/

“Treatment with CBMPs reduced the prevalence and intensity of suicidal ideation”

https://www.tandfonline.com/doi/full/10.1080/13811118.2024.2356615

Off-label use of cannabidiol in genetic epileptic and developmental encephalopathies: A case report

pubmed logo

“Developmental Epileptic encephalopathies (DEEs) are severe neurological conditions where cognitive functions appear modulated by both seizure and interictal epileptiform activity.

Cannabidiol (CBD) has been shown to be highly effective in the treatment of drug-resistant seizures in patients with DEEs.

Along with its antiseizure effects, CBD demonstrated clinical beneficial effects in patients’ quality of life, sleep and numerous adaptive behaviors. However, based on the available phase III studies, the indications for this treatment have so far been restricted to Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS) and tuberous sclerosis complex (TSC) by regulatory authorities.

We present the case of a 30-year-old girl with a rare genetic DEE, experiencing relevant seizure frequency reduction together with striking improvement in sleep quality, mood, behavior, language and motor skills after introducing off-label CBD.”

https://pubmed.ncbi.nlm.nih.gov/39040437/

  • “•Cannabidiol exerts also clinical beneficial non-seizure outocomes.
  • •Cannabidiol should be considered in other developmental epileptic encephalopathies.
  • •Cannabidiol presents antiepileptic, neuroprotective and anti-inflammatory effect.”

“Besides its antiseizures effect, CBD might lead to clinical beneficial effects in patients’ quality of life, sleep, cognition and numerous adaptive behaviors. Hopefully, the growing interest in the CBD antiepileptic activity will lead to its use in other developmental and epileptic encephalopathie.”

https://www.sciencedirect.com/science/article/pii/S2589986424000443?via%3Dihub


Melanoma and cannabinoids: A possible chance for cancer treatment

pubmed logo

“The endocannabinoid system is composed by a complex and ubiquitous network of endogenous lipid ligands, enzymes for their synthesis and degradation, and receptors, which can also be stimulated by exogenous compounds, such as those derived from the Cannabis sativa. Cannabis and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied in different conditions.

Recent data have shown that the endocannabinoid system is responsible for maintaining the homeostasis of various skin functions such as proliferation, differentiation and release of inflammatory mediators. Because of their role in regulating these key processes, cannabinoids have been studied for the treatment of skin cancers and melanoma; their anti-tumour effects regulate skin cancer progression and are mainly related to the inhibition of tumour growth, proliferation, invasion and angiogenesis, through apoptosis and autophagy induction. This review aims at summarising the current field of research on the potential uses of cannabinoids in the melanoma field.”

https://pubmed.ncbi.nlm.nih.gov/39039940/

“Cannabinoids exert noteworthy anti-tumour activity in animal models of cancer, but their possible anti-cancer effect in humans has not been established. Further studies should be carried out to optimise the use of cannabinoids in terms of patient selection, combination with other anticancer agents, administration route and delivery schedules. Regarding toxicity, cannabinoids not only show a good safety profile as they carry out their anti-proliferative effects on cancer cells only, but also have palliative effects in patients with cancer.”

https://onlinelibrary.wiley.com/doi/10.1111/exd.15144

The anxiolytic effects of cannabinoids: A comprehensive review

pubmed logo

“Cannabinoids, notably cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), have emerged as promising candidates for anxiety disorder treatment, supported by both preclinical and clinical evidence.

CBD exhibits notable anxiolytic effects with a favourable safety profile, though concerns regarding mild side effects and drug interactions remain. Conversely, THC, the primary psychoactive compound, presents a range of side effects, underscoring the importance of careful dosage management and individualized treatment strategies. So far there are no FDA approved cannabinoid medications for anxiety. The review highlights challenges in cannabinoid research, including dosage variability, variable preclinical data, and limited long-term data.

Despite these limitations, cannabinoids represent a promising avenue for anxiety management, with the potential for further optimization in formulation, dosing protocols, and consideration of interactions with conventional therapies. Addressing these challenges could pave the way for novel and personalized approaches to treating anxiety disorders using cannabinoid-based therapies.”

https://pubmed.ncbi.nlm.nih.gov/39032530/

“Cannabinoids have promising anxiolytic effects and favourable safety profile compared to contemporary anxiolytics.”

https://www.sciencedirect.com/science/article/abs/pii/S0091305724001229?via%3Dihub

Historical perspective on the therapeutic potential of cannabidiol

pubmed logo

“Cannabidiol (CBD) is one of over 200 cannabinoids present in the Cannabis plant. Unlike the plant’s primary cannabinoid, delta-9-tetrahydrocannabinol (THC), CBD does not produce psychotomimetic effects nor induce dependence. Initially considered an inactive cannabinoid, interest in its pharmacological properties and therapeutic potential has grown exponentially over the last 20 years.

Currently employed as a medication for certain epileptic syndromes, numerous pre-clinical and clinical studies support its potential use in various other disorders. In this chapter, we provide a brief historical overview of how this compound evolved from an “inactive substance” to a multifunctional clinical agent. Additionally, we discuss the current challenges in researching its potential therapeutic effects.”

https://pubmed.ncbi.nlm.nih.gov/39029980/

“In the sixty years that separate the initial studies with CBD from the current state of knowledge, understanding of its therapeutic potential has advanced remarkably. However, much of this potential still needs to be explored through randomized clinical trials to better establish CBD’s role in clinical therapy. This need, though, poses a significant obstacle to its development due to the high costs involved in conducting these trials and the difficulty of obtaining patents.”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000515?via%3Dihub


Cannabidiol and Alzheimer’s disease

pubmed logo

“Alzheimer’s disease (AD) stands as the most prevalent form of neuropsychiatric disorder among the elderly population, impacting a minimum of 50 million individuals worldwide. Current pharmacological treatments rely on the prescribing cholinesterase inhibitors and memantine. However,recently anecdotal findings based on low-quality real-world data had prompted physicians, patients, and their relatives to consider the use of cannabinoids, especially Cannabidiol (CBD), for alleviating of AD symptoms.

CBD the primary non-psychotomimetic compound found in the Cannabis sp. plant, exhibits promising therapeutic potential across various clinical contexts. Pre-clinical and in vitro studies indicate that CBD could mitigate cognitive decline and amyloid-beta-induced neurodegeneration by modulating oxidative stress and neuroinflammation.

In addition, CBD demonstrates significant effects in promoting neuroplasticity, particularly in brain regions such as the hippocampus. However, the available clinical evidence presents conflicting results, and no randomized placebo-controlled trials have been published to date.

In conclusion, although pre-clinical and in vitro studies offer encouraging insights into the potential benefits of CBD in AD models, new and well-designed clinical trials are imperative to ascertain the clinical relevance of CBD use in the management of AD symptoms, especially in comparison to conventional treatments.”

https://pubmed.ncbi.nlm.nih.gov/39029982/

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000667?via%3Dihub


Cannabidiol and epilepsy

pubmed logo

“Cannabidiol (CBD) has been investigated as a pharmacological approach for treating a myriad of neurological and psychiatric disorders, the most successful of them being its use as an antiseizure drug (ASD). Indeed, CBD has reached the clinics for the treatment of certain epileptic syndromes.

This chapter aims to overview the pharmacology of CBD and its potential mechanisms of action as an ASD. First, we give an outline of the concepts, mechanisms and pharmacology pertaining to the field of study of epilepsy and epileptic seizures. In the second section, we will summarize the effects of CBD as an ASD. Next, we will discuss its potential mechanisms of action to alleviate epileptic seizures, which seem to entail multiple neurotransmitters, receptors and intracellular pathways. Finally, we will conclude and present some limitations and perspectives for future studies.”

https://pubmed.ncbi.nlm.nih.gov/39029983/

“Five decades ago, early studies noted the potential effects of CBD in alleviating epileptic seizures. However, a prolonged period passed before scientific and social interest in this phytocannabinoid experienced a resurgence. This delay in exploration hindered a comprehensive understanding of its clinical profile, but mechanisms of action could finally be addressed. After a long journey starting from the bench, today CBD has become an additional therapeutic option for patients diagnosed with epilepsy”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000527?via%3Dihub

Therapeutic potential of CBD in Autism Spectrum Disorder

pubmed logo

“Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited.

Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders.

CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans.

Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.”

https://pubmed.ncbi.nlm.nih.gov/39029984/

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000709?via%3Dihub

Cannabidiol in anxiety disorders: Current and future perspectives

pubmed logo

“Anxiety disorders are highly prevalent psychiatric disorders, characterized by a chronic course and often accompanied by comorbid symptoms that impair functionality and decrease quality of life. Despite advances in basic and clinical research in our understanding of these disorders, currently available pharmacological options are associated with limited clinical benefits and side effects that frequently lead to treatment discontinuation. Importantly, a significant number of patients do not achieve remission and live with lifelong residual symptoms that limit daily functioning.

Since the 1970s, basic and clinical research on cannabidiol (CBD), a non-psychotomimetic compound found in the Cannabis sativa plant, has indicated relevant anxiolytic effects, garnering attention for its therapeutic potential as an option in anxiety disorder treatment. This chapter aims to review the history of these studies on the anxiolytic effects of CBD within the current understanding of anxiety disorders. It highlights the most compelling current evidence supporting its anxiolytic effects and explores future perspectives for its clinical use in anxiety disorders.”

https://pubmed.ncbi.nlm.nih.gov/39029985/

“In conclusion, the experimental and clinical use of CBD revealed significant anxiolytic effects. Since initial research in the 1970s, its potential as an anxiolytic agent has been explored by a growing number of studies using different models for anxiety disorders in pre-clinical, clinical and neuroimaging paradigms. This body of research has introduced CBD as a potential option for the treatment of anxiety disorders,”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000710?via%3Dihub

Cannabidiol effects on fear processing and implications for PTSD: Evidence from rodent and human studies

pubmed logo

“Cannabidiol (CBD) modulates aversive memory and its extinction, with potential implications for treating anxiety- and stress-related disorders. Here, we summarize and discuss scientific evidence showing that CBD administered after the acquisition (consolidation) and retrieval (reconsolidation) of fear memory attenuates it persistently in rats and mice. CBD also reduces fear expression and enhances fear extinction. These effects involve the activation of cannabinoid type-1 (CB1) receptors in the dorsal hippocampus, bed nucleus of stria terminalis, and medial prefrontal cortex, comprising the anterior cingulate, prelimbic, and infralimbic subregions. Serotonin type-1A (5-HT1A) receptors also mediate some CBD effects on fear memory. CBD effects on fear memory acquisition vary, depending on the aversiveness of the conditioning procedure. While rodent findings are relatively consistent and encouraging, human studies investigating CBD’s efficacy in modulating aversive/traumatic memories are still limited. More studies are needed to investigate CBD’s effects on maladaptive, traumatic memories, particularly in post-traumatic stress disorder patients.”

https://pubmed.ncbi.nlm.nih.gov/39029986/

“Rodent studies show that CBD can attenuate fear memories at several stages through its interaction with the endocannabinoid system (CB1 receptors). CBD can also reduce the intensity of fear responses through its interaction with 5-HT1A receptors and enhance the extinction of fear. However, the findings regarding CBD effects on fear memory acquisition are mixed. More research is needed to clarify these discrepancies.”

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000503?via%3Dihub