Update on Cannabidiol in Drug-Resistant Epilepsy

pubmed logo

“Cannabidiol (CBD) has arisen as a promising therapeutic option for children with drug-resistant epilepsy (DRE). CBD has received regulatory nod from different regulatory authorities in the United States, Europe, and India for children with DRE particularly, Dravet syndrome (DS), Lennox Gastaut syndrome (LGS), and Tuberous sclerosis complex (TSC).

Recent clinical trials and observational studies highlight the potential of CBD to lower seizure frequency and provide better quality of life in children affected by these disorders.

The safety profile is generally favorable with minor common adverse events such as somnolence, diarrhea, and gastrointestinal issues. Furthermore, the expense associated with CBD remains a notable concern, especially in low- and middle-income countries such as India, where access to this promising treatment may be constrained. This draws attention to the cost-effective perspective of CBD.

This review aims to explore the pharmacological properties of CBD, its mechanisms of action, and the clinical evidence supporting its use in various pediatric epilepsies, including LGS, DS, and TSC. Additionally, this review sheds light on the current regulatory landscape in India where CBD use is still in its nascent stages, and discusses the challenges and opportunities for integrating CBD into clinical practice.”

https://pubmed.ncbi.nlm.nih.gov/39585547/

https://link.springer.com/article/10.1007/s12098-024-05337-1

Cannabidiol Modulates Neuroinflammatory Markers in a PTSD Model Conducted on Female Rats

pubmed logo

“Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric condition closely linked to neuroinflammation, with a higher prevalence in women.

Cannabidiol (CBD), a non-psychoactive cannabinoid, has shown promise as a potential treatment for PTSD. In this study, we used a PTSD model in which female rats were subjected to a severe foot shock followed by contextual situational reminders (SRs).

Testing was conducted one month after exposure. The rats received daily CBD injections for three weeks during the SRs, from days 7 to 28. Two days after the final SR, the rats underwent five extinction trials, followed by the forced swim test (FST). After a five-day rest period, the rats were sacrificed, and brain tissues from the medial prefrontal cortex (mPFC) and ventral subiculum (vSUB) were analyzed for inflammatory markers.

Chronic CBD treatment reversed impairments in fear extinction caused by shock and SR. It also reduced learned helplessness in the FST and decreased the upregulation of mPFC-il1β induced by shock and SRs. Additionally, exposure to shock and SRs downregulated mPFC-il6 while upregulating vSUB-il6. CBD treatment further downregulated il6 expression in the vSUB compared to the vehicle groups.

Our findings show that CBD effectively inhibited the development of PTSD-like behaviors and suppressed neuroinflammation in the mPFC.”

https://pubmed.ncbi.nlm.nih.gov/39595561/

https://www.mdpi.com/2218-273X/14/11/1384

Cannabidiol Enhances Mitochondrial Metabolism and Antioxidant Defenses in Human Intestinal Epithelial Caco-2 Cells

pubmed logo

“Background: The reintroduction of hemp production has resulted in increased consumption of cannabidiol (CBD) products, particularly CBD oil, yet their effects on intestinal health are not fully understood. Proper mitochondrial function and antioxidant defenses are vital for maintaining the intestinal epithelial barrier. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator (PGC)1α are key mediators of mitochondrial metabolism.

Methods & results: Using Caco-2 cells, we found that CBD oil promoted AMPK phosphorylation, upregulated differentiation markers, and enhanced PGC1α/SIRT3 mitochondrial signaling. CBD oil reduced reactive oxygen species production and increased antioxidant enzymes. Moreover, CBD oil also increased levels of citrate, malate, and succinate-key metabolites of the tricarboxylic acid cycle-alongside upregulation of pyruvate dehydrogenase and isocitrate dehydrogenase 1. Similarly, pure CBD induced metabolic and antioxidant signaling.

Conclusions: CBD enhances mitochondrial metabolic activity and antioxidant defense in Caco-2 cells, making it a promising candidate for treating intestinal dysfunction.”

https://pubmed.ncbi.nlm.nih.gov/39599629/

https://www.mdpi.com/2072-6643/16/22/3843

Cannabidiol mitigates methotrexate-induced hepatic injury via SIRT-1/p53 signaling and mitochondrial pathways: reduces oxidative stress and inflammation

pubmed logo

“Methotrexate (MTX), a widely used chemotherapeutic agent, often induces hepatotoxicity, limiting its clinical utility.

Cannabidiol (CBD), derived from hemp, possesses antioxidant, anti-inflammatory, and antiapoptotic properties.

This study aims to investigate CBD’s protective effects against MTX-induced liver injury and elucidate the underlying mechanisms.

Thirty-two female Wistar Albino rats were divided into four groups: control, MTX (20 mg/kg intraperitoneally [i.p.] once), MTX+CBD (20 mg/kg i.p. once + 5 mg/kg i.p. for seven days), and CBD (5 mg/kg, i.p. for seven days). Biochemical analyses of serum and liver tissues were performed to assess oxidative stress markers (total oxidant status, total antioxidant status, oxidative stress index), liver function tests (AST, ALT), and antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase). Histopathological and immunohistochemical examinations were conducted to evaluate liver tissue damage and TNF-α expression. Genetic analyses were performed to measure the expression levels of SIRT-1, p53, Bcl-2, and Bax genes using RT-qPCR. MTX administration increased oxidative stress markers, liver enzymes, TNF-α, p53, and Bax levels while decreasing antioxidant defenses and SIRT-1 expression.

CBD administration reversed these alterations effectively.

CBD mitigated MTX-induced hepatotoxicity by reducing oxidative stress, inflammation, and apoptosis. It activates antioxidant defenses via SIRT-1 upregulation, suppresses inflammation by reducing TNF-α, and prevents apoptosis by modulating p53, Bcl-2, and Bax gene expressions.

These findings suggest CBD could be a promising therapeutic agent for chemotherapy-induced liver damage. Further research is warranted to explore additional pathways and broader molecular mechanisms.”

https://pubmed.ncbi.nlm.nih.gov/39603835/

https://www.tandfonline.com/doi/full/10.1080/01480545.2024.2425994